BackgroundIt has been claimed that the retina can be used as a window to study brain disorders. However, concerning Alzheimer’s disease (AD), it still remains controversial whether changes occurring in the brain and retina are associated. We aim to understand when changes start appearing in the retina and brain, how changes progress, and if they are correlated.MethodsWe carried out a unique longitudinal study, at 4, 8, 12, and 16 months of age, in a triple transgenic mouse model of AD (3×Tg-AD), which mimics pathological and neurobehavioral features of AD, as we have already shown. Retinal structure and physiology were evaluated in vivo using optical coherence tomography and electroretinography. Brain visual cortex structure was evaluated in vivo using magnetic resonance imaging.ResultsThe retinal thickness of 3×Tg-AD decreased, at all time points, except for the outer nuclear layer, where the opposite alteration was observed. Amplitudes in scotopic and photopic responses were increased throughout the study. Similarly, higher amplitude and lower phase values were observed in the photopic flicker response. No differences were found in the activity of retinal ganglion cells. Visual cortex gray matter volume was significantly reduced.ConclusionsOur results show that this animal model shows similar neural changes in the retina and brain visual cortex, i.e., retinal and brain thinning. Moreover, since similar changes occur in the retina and brain visual cortex, these observations support the possibility of using the eye as an additional tool (noninvasive) for early AD diagnosis and therapeutic monitoring.
The understanding of the natural history of Alzheimer’s disease (AD) and temporal trajectories of in vivo molecular mechanisms requires longitudinal approaches. A behavioral and multimodal imaging study was performed at 4/8/12 and 16 months of age in a triple transgenic mouse model of AD (3xTg-AD). Behavioral assessment included the open field and novel object recognition tests. Molecular characterization evaluated hippocampal levels of amyloid (A ) and hyperphosphorylated tau. Magnetic resonance imaging (MRI) included assessment of hippocampal structural integrity, blood–brain barrier (BBB) permeability and neurospectroscopy to determine levels of the endogenous neuroprotector taurine. Longitudinal brain amyloid accumulation was assessed using 11 C Pittsburgh compound B positron emission tomography (PET), and neuroinflammation/microglia activation was investigated using 11 C-PK1195. We found altered locomotor activity at months 4/8 and 16 months and recognition memory impairment at all time points. Substantial early reduction of hippocampal volume started at month 4 and progressed over 8/12 and 16 months. Hippocampal taurine levels were significantly decreased in the hippocampus at months 4/8 and 16. No differences were found for amyloid and neuroinflammation with PET, and BBB was disrupted only at month 16. In summary, 3xTg-AD mice showed exploratory and recognition memory impairments, early hippocampal structural loss, increased A and hyperphosphorylated tau and decreased levels of taurine. In sum, the 3xTg-AD animal model mimics pathological and neurobehavioral features of AD, with early-onset recognition memory loss and MRI-documented hippocampal damage. The early-onset profile suggests temporal windows and opportunities for therapeutic intervention, targeting endogenous neuroprotectors such as taurine.
Huntington's disease (HD) is a neurodegenerative disorder causing cognitive and motor impairments, evolving to death within 15-20 years after symptom onset. We previously established a mouse model with the entire human HD gene containing 128 CAG repeats (YAC128) which accurately recapitulates the natural history of the human disease. Defined time points in this natural history enable the understanding of longitudinal trajectories from the neurochemical and structural points of view using non-invasive high-resolution multi-modal imaging. Accordingly, we designed a longitudinal structural imaging (MRI and DTI) and spectroscopy (1H-MRS) study in YAC128, at 3, 6, 9 and 12 months of age, at 9.4 T. Structural analysis (MRI/DTI), confirmed that the striatum is the earliest affected brain region, but other regions were also identified through connectivity analysis (pre-frontal cortex, hippocampus, globus pallidus and thalamus), suggesting a striking homology with the human disease. Importantly, we found for the first time, a negative correlation between striatal and hippocampal changes only in YAC128. In fact, the striatum showed accelerated volumetric decay in HD, as opposed to the hippocampus. Neurochemical analysis of the HD striatum suggested early neurometabolic alterations in neurotransmission and metabolism, with a significant increase in striatal GABA levels, and specifically anticorrelated levels of N-acetyl aspartate and taurine, suggesting that the later is homeostatically adjusted for neuroprotection, as neural loss, indicated by the former, is progressing. These results provide novel insights into the natural history of HD and prove a valuable role for longitudinal multi-modal panels of structural and metabolite/neurotransmission in the YAC128 model.
We determined the effect of N-acetylcysteine (NAC) on the expression of the phosphorylated p38 (p-p38) protein and superoxide anion generation (SAG), two important players in the processing of neuropathic pain, in the lumbosacral spinal cord of rats with chronic constriction injury (CCI)-induced neuropathic pain. The sciatic functional index (SFI) was also measured to assess the functional recovery post-nerve lesion. Thirty-six male Wistar rats were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received 2, 4, or 8 intraperitoneal injections of NAC (150 mg·kg-1·day-1) or saline beginning 4 h after CCI. Rats were sacrificed 1, 3, and 7 days after CCI. The SFI was measured on these days and the lumbosacral spinal cord was used for analysis of p-p38 expression and SAG. CCI induced a decrease in SFI as well as an increase in p-p38 expression and SAG in the spinal cord. The SFI showed a partial recovery at day 7 in saline-treated CCI rats, but recovery was improved in NAC-treated CCI rats. NAC induced a downregulation in p-p38 expression at all time-points evaluated, but did not reverse the increased SAG induced by CCI. Since p-p38 is a mediator in neuropathic pain and/or nerve regeneration, modulation of this protein may play a role in NAC-induced effects in CCI rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.