This paper details the research, development, and demonstrations of real-world systems intended to assist the driver in urban environments, as part of the Urban Intelligent Assist (UIA) research initiative. A 3-year collaboration between
In this study, we present novel work focused on assisting the driver during merge maneuvers. We use an automotive testbed instrumented with sensors for monitoring critical regions in the vehicle's surround. Fusing information from multiple sensor modalities,we integrate measurements into a contextually relevant, intuitive, general representation, which we term the Dynamic Probabilistic Drivability Map [DPDM]. We formulate the DPDM for driver assistance as a compact representation of the surround environment, integrating vehicle tracking information, lane information, road geometry, obstacle detection, and ego-vehicle dynamics. Given a robust understanding of the ego-vehicle's dynamics, other vehicles, and the on-road environment, our system recommends merge maneuvers to the driver, formulating the maneuver as a dynamic programming problem over the DPDM, searching for the minimum cost solution for merging. Based on the configuration of the road, lanes, and other vehicles on the road, the system recommends the appropriate acceleration or deceleration for merging into the adjacent lane, specifying when and how to merge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.