BackgroundAn increase in the frequency of circulating endothelial colony forming cells (ECFCs), the only subset of endothelial progenitor cells (EPCs) truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF). Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE) activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs) and subjects suffering from renal cellular carcinoma (RCC-ECFCs). SOCE is up-regulated in RCC-ECFCs due to the over-expression of its underlying molecular components, namely Stim1, Orai1, and TRPC1.Methodology/Principal FindingsWe utilized Ca2+ imaging, real-time polymerase chain reaction, western blot analysis and functional assays to evaluate molecular structure and the functional role of SOCE in ECFCs derived from PMF patients (PMF-ECFCs). SOCE, induced by either pharmacological (i.e. cyclopiazonic acid or CPA) or physiological (i.e. ATP) stimulation, was significantly higher in PMF-ECFCs. ATP-induced SOCE was inhibited upon blockade of the phospholipase C/InsP3 signalling pathway with U73111 and 2-APB. The higher amplitude of SOCE was associated to the over-expression of the transcripts encoding for Stim2, Orai2–3, and TRPC1. Conversely, immunoblotting revealed that Stim2 levels remained constant as compared to N-ECFCs, while Stim1, Orai1, Orai3, TRPC1 and TRPC4 proteins were over-expressed in PMF-ECFCs. ATP-induced SOCE was inhibited by BTP-2 and low micromolar La3+ and Gd3+, while CPA-elicited SOCE was insensitive to Gd3+. Finally, BTP-2 and La3+ weakly blocked PMF-ECFC proliferation, while Gd3+ was ineffective.ConclusionsTwo distinct signalling pathways mediate SOCE in PMF-ECFCs; one is activated by passive store depletion and is Gd3+-resistant, while the other one is regulated by the InsP3-sensitive Ca2+ pool and is inhibited by Gd3+. Unlike N- and RCC-ECFCs, the InsP3-dependent SOCE does not drive PMF-ECFC proliferation.
Human life develops and expands not only in time and space, but also in the retrograde permanent recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered or lost under pathological conditions such as Alzheimer’s disease, including recently associated oxidant pathologies, such as ocular neural degeneration occurring in glaucoma or neurosensorial degeneration occurring in Menière’s disease. Oxidative stress and altered antioxidant systems have been suggested to play a role in the aetiology of major neurodegenerative disorders, and altered expression of genes sensing oxidative stress, as well as decreased cellular stress response mechanisms could synergistically contribute to the course of these oxidant disorders. Thus, the theory that low levels of stress can produce protective responses against the pathogenic processes is a frontier area of neurobiological research focal to understanding and developing therapeutic approaches to neurodegenerative disorders. Herein, we discuss cellular mechanisms underlying AD neuroinflammatory pathogenesis that are contributory to Alzheimer’s disease. We describe endogenous cellular defence mechanism modulation and neurohormesis as a potentially innovative approach to therapeutics for AD and other neurodegenerative conditions that are associated with mitochondrial dysfunction and neuroinflammation. Particularly, we consider the emerging role of the inflammasome as an important component of the neuroprotective network, as well as the importance of Coriolus and Hericium nutritional mushrooms in redox stress responsive mechanisms and neuroprotection.
Bacterial sepsis induces the production of excessive pro-inflammatory cytokines and oxidative stress, resulting in tissue injury and hyperinflammation. Patients recovering from sepsis have increased rates of central nervous system (CNS) morbidities, which are linked to long-term cognitive impairment, such as neurodegenerative pathologies. This paper focuses on the tissue injury and hyperinflammation observed in the acute phase of sepsis and on the development of long-term neuroinflammation associated with septicemia. Here we evaluate the effects of Coriolus versicolor administration as a novel approach to treat polymicrobial sepsis. Rats underwent cecal ligation and perforation (CLP), and Coriolus versicolor (200 mg/kg in saline) was administered daily by gavage. Survival was monitored, and tissues from vital organs that easily succumb to infection were harvested after 72 h to evaluate the histological changes. Twenty-eight days after CLP, behavioral analyses were performed, and serum and brain (hippocampus) samples were harvested at four weeks from surgery. Coriolus versicolor increased survival and reduced acute tissue injury. Indeed, it reduced the release of pro-inflammatory cytokines in the bloodstream, leading to a reduced chronic inflammation. In the hippocampus, Coriolus versicolor administration restored tight junction expressions, reduce cytokines accumulation and glia activation. It also reduced toll-like receptor 4 (TLR4) and neuronal nitric oxide synthase (nNOS) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome components expression. Coriolus versicolor showed antioxidant activities, restoring glutathione (GSH) levels and catalase and superoxide dismutase (SOD) activities and reducing lipid peroxidation, nitrite and reactive oxygen species (ROS) levels. Importantly, Coriolus versicolor reduced amyloid precursor protein (APP), phosphorylated-Tau (p-Tau), pathologically phosphorylated tau (PHF1), phosphorylated tau (Ser202 and Thr205) (AT8), interferon-induced transmembrane protein 3 (IFITM3) expression, and β-amyloid accumulation induced by CLP. Indeed, Coriolus versicolor restored synaptic dysfunction and behavioral alterations. This research shows the effects of Coriolus versicolor administration on the long-term development of neuroinflammation and brain dysfunction induced by sepsis. Overall, our results demonstrated that Coriolus versicolor administration was able to counteract the degenerative process triggered by sepsis.
Alzheimer’s disease (AD) is the most common cause of dementia, and its prevalence rises with age. Inflammation and altered antioxidant systems play essential roles in the genesis of neurodegenerative diseases. In this work, we looked at the effects of MemophenolTM, a compound rich in polyphenols derived from French grape (Vitis vinifera L.) and wild North American blueberry (Vaccinium angustifolium A.) extracts, in a rat model of AD. Methods: For 60 days, the animals were administered with AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally), while from day 30, MemophenolTM (15 mg/kg) was supplied orally for 30 consecutive days. AlCl3 accumulates mainly in the hippocampus, the main part of the brain involved in memory and learning. Behavioral tests were performed the day before the sacrifice when brains were collected for analysis. Results: MemophenolTM decreased behavioral alterations and hippocampus neuronal degeneration. It also lowered phosphorylated Tau (p-Tau) levels, amyloid precursor protein (APP) overexpression, and β-amyloid (Aβ) buildup. Furthermore, MemophenolTM reduced the pro-oxidative and pro-inflammatory hippocampus changes caused by AD. Our finding, relevant to AD pathogenesis and therapeutics, suggests that MemophenolTM, by modulating oxidative and inflammatory pathways and by regulating cellular brain stress response mechanisms, protects against the behavioral and histopathological changes associated with AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.