In this study, Deep Level Transient Spectroscopy (DLTS) measurements have been performed on Cu(In,Ga)Se2 (CIGS) solar cells from an inline co-evaporation system. The focus of this investigation is directed on the effect of rubidium-fluoride (RbF)-post-deposition treatment (PDT) on the defects in the CIGS absorber layer. Different traps can be identified and their properties are calculated. Herein, different methods of evaluations have been used to verify the results. Specifically, one minority trap around 400 meV was found to show a significant reduction of the trap density due to the alkali treatment. In contrast, a majority trap at approximately 600 meV is unaffected.
Despite the efficiencies above 20% achieved with (Ag,Cu)(In,Ga)Se2 (ACIGS) solar cells, further efficiency improvements are necessary. One possibility is the implementation of a postdeposition treatment (PDT) process. The aim of this study is therefore to investigate the effect of rubidium‐fluoride (RbF)‐PDT on the performance and physical properties of the ACIGS absorber. For this purpose, the RbF source temperature of the PDT process of ACIGS films with Ag/(Ag+Cu) (AAC) ratios of 5% from a multistage co‐evaporation inline process was systematically varied. It was shown that the efficiency of the devices is reduced by the PDT process, unlike observed for Cu(In,Ga)Se2 (CIGS) absorber, and is strongly influenced by the amount of rubidium. The behavior can be attributed to a strong reduction of the doping, which results from a changed doping mechanism. Furthermore, evidence for the formation of an additional layer was found. In addition, deep level transient spectroscopy (DLTS) measurements were performed on the samples showing a strong signal at low temperatures. This minority trap signal is strongly influenced by the amount of Rb and shows a systematically changing energetic position towards the middle of the band gap and an increasing density. Based on pulse variation measurements, the associated defect could be identified as an extended defect, indicating a location of the defect at grain boundaries.
Topology optimization is typically used for suitable design suggestions for objectives like mean compliance, mean temperature, or model analysis. Some modern modeling technics in topology optimization require a nodal based material interpolation. Therefore this article is referred to a continuous material interpolation in topology optimization. To cover a smooth and differentiable density field, we address trigonometric shape functions which are infinitely differentiable. Furthermore, we extend a so-known global criteria method with a sharpening function based on binary cross-entropy, so that sharper solutions results. The proposed material interpolation is applied to different applications such as heat transfer, elasto static, and potential flow. Furthermore, these different objectives are together optimized using a multi-objective criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.