Cruciferous vegetables are a valuable source of ingredients with health benefits. The most characteristic compounds of cruciferous vegetables with identified anticancer properties are glucosinolates. Young shoots and sprouts of red cabbage are becoming a popular fresh food rich in nutrients and bioactive compounds. The objective of this research was to determine, for the first time in a comprehensive approach, whether young shoots of red headed cabbage are a better source of selected nutrients and glucosinolates in the human diet in comparison to the vegetable at full maturity. The proximate composition (protein, fat, digestible carbohydrates, fiber), fatty acids profile, minerals (calcium, magnesium, potassium, sodium, iron, zinc, manganese, copper), as well as glucosinolates were examined. The red headed cabbage was characterized by a significantly larger amount of dry matter, and total and digestible carbohydrates in comparison to young shoots. The ready-to-eat young shoots, which are in the phase of intensive growth, are a better source of protein, selected minerals, and especially glucosinolates. The level of some nutrients can be enhanced and the intake of pro-healthy glucosinolates can be significantly increased by including young shoots of red cabbage into the diet.
Natural polysaccharides, including hyaluronic acid, find a wide range of applications in biomedical sciences. There is a growing interest in nanocomposites containing hyaluronic acid and nanoparticles such as nanometals or graphene. In this study, we prepared foils of pure sodium hyaluronate and sodium hyaluronate containing nanosilver, graphene oxide, nanosilver/graphene oxide and characterized their properties. UV-vis spectroscopy and scanning electron microscopy (SEM) confirmed the formation of 10–20 nm silver nanoparticles. The structural changes were investigated using Fourier transforms infrared (FTIR) spectra and size exclusion chromatography. The obtained results suggest changes in molecular weights in the samples containing nanoparticles, which was highest in a sample containing nanosilver/graphene oxide. We also assessed the mechanical properties of the foils (thickness, tensile strength and elongation at break) and their wettability. The foils containing nanosilver and nanosilver/graphene oxide presented bacteriostatic activity against E. coli, Staphylococcus spp. and Bacillus spp., which was not observed in the control and sample containing graphene oxide. The composites containing graphene oxide and nanosilver/graphene oxide exhibited a cytotoxic effect on human melanoma WM266-4 cell lines (ATCC, Manassas, VA, USA).
In our previous study, we showed that fatty acids from CLA-enriched egg yolks (EFA-CLA) reduced the proliferation of breast cancer cells; however, the molecular mechanisms of their action remain unknown. In the current study, we used MCF-7 breast cancer cell line to determine the effect of EFA-CLA, as potential ligands for peroxisome proliferator-activated receptors (PPARs), on identified in silico PPAR-responsive genes: BCAR3, TCF20, WT1, ZNF621, and THRB (transcript TRβ2). Our results showed that EFA-CLA act as PPAR ligands with agonistic activity for all PPAR isoforms, with the highest specificity towards PPARγ. In conclusion, we propose that EFA-CLA-mediated regulation of PPAR-responsive genes is most likely facilitated by cis9,trans11CLA isomer incorporated in egg yolk. Notably, EFA-CLA activated PPAR more efficiently than nonenriched FA as well as synthetic CLA isomers. We also propose that this regulation, at least in part, can be responsible for the observed reduction in the proliferation of MCF-7 cells treated with EFA-CLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.