In radiation biophysics, it is a subject of nowadays research to investigate DNA strand break repair in detail after damage induction by ionizing radiation. It is a subject of debate as to what makes up the cell’s decision to use a certain repair pathway and how the repair machinery recruited in repair foci is spatially and temporarily organized. Single-molecule localization microscopy (SMLM) allows super-resolution analysis by precise localization of single fluorescent molecule tags, resulting in nuclear structure analysis with a spatial resolution in the 10 nm regime. Here, we used SMLM to study MRE11 foci. MRE11 is one of three proteins involved in the MRN-complex (MRE11-RAD50-NBS1 complex), a prominent DNA strand resection and broken end bridging component involved in homologous recombination repair (HRR) and alternative non-homologous end joining (a-NHEJ). We analyzed the spatial arrangements of antibody-labelled MRE11 proteins in the nuclei of a breast cancer and a skin fibroblast cell line along a time-course of repair (up to 48 h) after irradiation with a dose of 2 Gy. Different kinetics for cluster formation and relaxation were determined. Changes in the internal nano-scaled structure of the clusters were quantified and compared between the two cell types. The results indicate a cell type-dependent DNA damage response concerning MRE11 recruitment and cluster formation. The MRE11 data were compared to H2AX phosphorylation detected by γH2AX molecule distribution. These data suggested modulations of MRE11 signal frequencies that were not directly correlated to DNA damage induction. The application of SMLM in radiation biophysics offers new possibilities to investigate spatial foci organization after DNA damaging and during subsequent repair.
Fluorescence microscopy is an essential tool for imaging tagged biological structures. Due to the wave nature of light, the resolution of a conventional fluorescence microscope is limited laterally to about 200 nm and axially to about 600 nm, which is often referred to as the Abbe limit. This hampers the observation of important biological structures and dynamics in the nano-scaled range ~10 nm to ~100 nm. Consequentially, various methods have been developed circumventing this limit of resolution. Super-resolution microscopy comprises several of those methods employing physical and/or chemical properties, such as optical/instrumental modifications and specific labeling of samples. In this article, we will give a brief insight into a variety of selected optical microscopy methods reaching super-resolution beyond the Abbe limit. We will survey three different concepts in connection to biological applications in radiation research without making a claim to be complete.
Background: Noninvasive prenatal testing (NIPT) for fetal antigens is a common standard for targeted immune prophylaxis in RhD-mediated hemolytic disease of the fetus and newborn, and is most frequently done by quantitative PCR (qPCR). A similar approach is considered for other blood group and human platelet alloantigens (HPA). Because of a higher sensitivity compared to qPCR for rare molecule detection, we established and validated digital PCR (dPCR) assays for the detection of RHD exons 3, 5 and 7, KEL1, HPA-1a, and HPA-5b from cell-free DNA (cfDNA) in plasma. The dPCR assays for the Y-chromosomal marker amelogenin and autosomal SNPs were implemented as controls for the proof of fetal DNA. Methods: Validation was performed on dilution series of mixed plasma samples from volunteer donors with known genotypes. After preamplification of the target loci, two-color (FAM and VIC) TaqMan TM probe chemistry and chip-based dPCR were applied. The assays for RHD included GAPDH as an internal control. For the diallelic markers KEL1/2, HPA-1a/b, HPA-5a/b, and AMEL-X/Y and 3 autosomal SNPs, the probes enabled allelic discrimination in the two fluorescence channels. The dPCR protocol for NIPT was applied to plasma samples from pregnant women. Results: The RHD exon 5 assay allowed the detection of a 0.05% RHD target in an RhD-negative background, whereas the exon 7 assay required at least a 0.25% target. The exon 3 assay showed the highest background and required at least a 2.5% RHD target for reliable detection. The dPCR assays for the diallelic markers revealed similar sensitivity and enabled the detection of at least a 0.5% target allele. The HPA-1a assay was the most sensitive and allowed target detection in plasma mixtures containing only 0.05% HPA-1a. The plasma samples from 13 pregnant women at different gestational ages showed unambiguous positive and negative results for the analyzed targets. Conclusion: Analysis of cfDNA from maternal plasma using dPCR is suitable for the detection of fetal alleles. Because of the high sensitivity of the assays, the NIPT protocol for RhD, KEL1, and HPA can also be applied to earlier stages of pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.