The stiffening and embrittlement of oil paints over time has been a real concern for those responsible for the long term care and preservation of paintings. This paper examines the effects of time, pigments, relative humidity (RH), temperature and solvents on the mechanical properties of traditional oil paints. In this way it is possible to determine the role of each factor in causing the paints to become brittle. Even after 14 years the oil paints show little evidence that the long term "maturing" processes have begun to slow down. It is shown that there seems to be little correlation between the time paint requires to "dry-to-the-touch" and the longer term mechanical properties. Both low and high temperature levels can increase the stiffness of the paints though the mechanisms are quite different. Considerable hydrolysis of the paints occurs early in their history and the ones that hydrolyze most quickly are the ones that remain the most flexible.
The drying shrinkage accumulation from exposure of freshly prepared gesso layers to relative humidity (RH) cycles was determined to elucidate the mechanism of craquelure pattern formation on panel paintings. The progresive drying shrinkage of the gesso is observed only under the cycles going to high RH levels which bring about transitions from brittle to ductile state of the material. The first incidence of fracture on the gesso layers occurred after a limited number of cycles ranging between a few and 100 for a range of layer thickness between 0.5 and 1 mm. The craquelure patterns stabilised also after a limited number of cycles (30 for the 1-mm thick layer). Upon increase in the gesso layer thickness, the strength of the layer is reduced and the spacing of shrinkage fractures increases. The study demonstrated that craquelure patterns, mimicking historical ones, can be realistically produced in laboratory conditions. Such studies would provide useful information for preparing specimens simulating historic panel paintings and would inform the current efforts on automatic, computer-aided classifications of crack formations on paintings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.