BackgroundObesity-associated organ-specific pathological states can be ensued from the dysregulation of the functions of the adipose tissues, liver and muscle. However, the influence of genetic differences underlying gross-compositional differences in these tissues is largely unknown. In the present study, the analytical method of ATR-FTIR spectroscopy has been combined with a genetic approach to identify genetic differences responsible for phenotypic alterations in adipose, liver and muscle tissues.ResultsMice from 29 BXD recombinant inbred mouse strains were put on high fat diet and gross-compositional changes in adipose, liver and muscle tissues were measured by ATR-FTIR spectroscopy. The analysis of genotype-phenotype correlations revealed significant quantitative trait loci (QTL) on chromosome 12 for the content of fat and collagen, collagen integrity, and the lipid to protein ratio in adipose tissue and on chromosome 17 for lipid to protein ratio in liver. Using gene expression and sequence information, we suggest Rsad2 (viperin) and Colec11 (collectin-11) on chromosome 12 as potential quantitative trait candidate genes. Rsad2 may act as a modulator of lipid droplet contents and lipid biosynthesis; Colec11 might play a role in apoptopic cell clearance and maintenance of adipose tissue. An increased level of Rsad2 transcripts in adipose tissue of DBA/2J compared to C57BL/6J mice suggests a cis-acting genetic variant leading to differential gene activation.ConclusionThe results demonstrate that the analytical method of ATR-FTIR spectroscopy effectively contributed to decompose the macromolecular composition of tissues that accumulate fat and to link this information with genetic determinants. The candidate genes in the QTL regions may contribute to obesity-related diseases in humans, in particular if the results can be verified in a bigger BXD cohort.
We suggest that an exposure of mice to HP diets or a corresponding leucine supplementation has no significant effect on energy homeostasis and UCP expression compared with AP diets when feeding a low-fat diet. The use of high-quality whey protein might at least in part explain the results obtained.
The Berlin Fat Mouse Inbred (BFMI) line harbors a major recessive gene defect on chromosome 3 (jobes1) leading to juvenile obesity and metabolic syndrome. The present study aimed at the identification of metabolites that might be linked to recessively acting genes in the obesity locus. Firstly, serum metabolites were analyzed between obese BFMI and lean B6 and BFMI × B6 F1 mice to identify metabolites that are different. In a second step, a metabolite–protein network analysis was performed linking metabolites typical for BFMI mice with genes of the jobes1 region. The levels of 22 diacyl-phosphatidylcholines (PC aa), two lyso-PC and three carnitines were found to be significantly lower in obese mice compared with lean mice, while serine, glycine, arginine and hydroxysphingomyelin were higher for the same comparison. The network analysis identified PC aa C42:1 as functionally linked with the genes Ccna2 and Trpc3 via the enzymes choline kinase alpha and phospholipase A2 group 1B (PLA2G1B), respectively. Gene expression analysis revealed elevated Ccna2 expression in adipose tissue of BFMI mice. Furthermore, unique mutations were found in the Ccna2 promoter of BFMI mice which are located in binding sites for transcription factors or micro RNAs and could cause differential Ccna2 mRNA levels between BFMI and B6 mice. Increased expression of Ccna2 was consistent with higher mitotic activity of adipose tissue in BFMI mice. Therefore, we suggest a higher demand for PC necessary for adipose tissue growth and remodeling. This study highlights the relationship between metabolite profiles and the underlying genetics of obesity in the BFMI line.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-013-0590-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.