Pathogenesis and progression of lung cancer are governed by complex interactions between the environment and host genetic susceptibility, which is further modulated by genetic and epigenetic changes. Autotaxin (ATX, ENPP2) is a secreted glycoprotein that catalyzes the extracellular production of lysophosphatidic acid (LPA), a growth-factor-like phospholipid that is further regulated by phospholipid phosphatases (PLPP). LPA's pleiotropic effects in almost all cell types are mediated through at least six G-protein coupled LPA receptors (LPAR) that exhibit overlapping specificities, widespread distribution, and differential expression profiles. Here we use both preclinical models of lung cancer and clinical samples (from patients and healthy controls) to investigate the expression levels, activity, and biological role of the above components of the ATX/LPA axis in lung cancer. was genetically altered in 8% of patients with lung cancer, whereas increased ATX staining and activity were detected in patient biopsies and sera, respectively. Moreover, expression was consistently downregulated in patients with lung cancer. Comparable observations were made in the two most widely used animal models of lung cancer, the carcinogen urethane-induced and the genetically engineered -driven models, where genetic deletion of or resulted in disease attenuation, thus confirming a procarcinogenic role of LPA signaling in the lung. Expression profiling data analysis suggested that metabolic rewiring may be implicated in the procarcinogenic effects of the ATX/LPA axis in- -driven lung cancer pathogenesis. These findings establish the role of ATX/LPA in lung carcinogenesis, thus expanding the mechanistic links between pulmonary fibrosis and cancer. .
Keywords: sepsis, serum proteins, LPS, LTABacterial cell wall components, such LPS and LTA, are potent initiators of an inflammatory response that can lead to septic shock. The advances in the past were centered around membrane-bound receptors and intracellular events, but our understanding of the initial interactions of these bacterial components with serum proteins as they enter the bloodstream remain unclear. In this study we identified several serum proteins, which are involved in the innate recognition of bacterial products. Using affinity chromatography and mass spectrometry we performed proteomic analysis of LPS-and LTA-binding serum proteins. We isolated proteins from normal serum that can interact with LPS and LTA. Fluorescent binding experiments and cytokine assays revealed that serum proteins, such as apolipoprotein, LDL, transferrin and holotransferrin could neutralize LPS/LTA binding as well as the subsequent inflammatory response, suggesting that serum proteins modulate LPS/LTA-induced responses. When compared with the proteomic profile of serum from septic patients it was shown that these proteins were in lower abundance. Investigation of serum proteins in 25 critically ill patients with a mortality rate of 40% showed statistically higher levels of these proteins in survivors.Patients surviving sepsis had statistically significant higher levels of apolipoprotein, albumin, LDL, transferrin and holotransferrin than individuals that succumbed, suggesting that these proteins have an inhibitory effect on LPS/LTAinduced inflammatory responses and in their absence there might be an augmented inflammatory response in sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.