Limited endurance of Resistive RAM (RRAM) is a major challenge for future computing systems. Using thorough endurance tests that incorporate fine-grained read operations at the array level, we quantify for the first time temporary write failures (TWFs) caused by intrinsic RRAM cycle-to-cycle and cell-to-cell variations. We also quantify permanent write failures (PWFs) caused by irreversible breakdown/dissolution of the conductive filament. We show how technology-, RRAM programmingand system resilience-level solutions can be effectively combined to design new generations of energy-efficient computing systems that can successfully run deep learning (and other machine learning) applications despite TWFs and PWFs. We analyze corresponding system lifetimes and TWF BER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.