Adenosine acts via A1 adenosine receptors (A1ARs) in the heart and brain to potently influence mammalian physiology. A1ARs are expressed very early in embryonic development, and A1ARs are among the earliest expressed G protein coupled receptors in the heart and brain. To understand the biologic basis of A1AR expression, a genomic fragment containing the murine A1AR promoter was cloned. Reporter assay studies using DDT1 MF2 cells that express A1ARs revealed that 500 base pairs of the proximal A1AR promoter contained essential elements for A1AR gene expression. Transgenic mice with A1AR proximal promoter coupled with the -galactosidase reporter gene had heavy labeling of the brain and atria, consistent with normal patterns of A1AR expression. Within the proximal A1AR promoter, putative binding sites for cardiac transcription factors GATA and Nkx2.5 were identified. Co-expression studies revealed that GATA-4 and Nkx2.5 could individually drive A1AR promoter activity and act synergistically to activate A1AR expression. These observations suggest that embryonic A1AR expression involves activation of the A1AR promoter by GATA-4 and Nkx2.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.