We have conducted high pressure far-infrared absorbance and Raman spectroscopic investigations on a natural iron-free dolomite sample up to 40 GPa. Comparison between the present observations and literature results unraveled the effect of hydrostatic conditions on the high pressure dolomite polymorph adopted close to 40 GPa, i.e. the triclinic Dol-IIIc modification. In particular, non-hydrostatic conditions impose structural disorder at these pressures, whereas hydrostatic conditions allow the detection of an ordered Dol-IIIc vibrational response. Hence, hydrostatic conditions appear to be a key ingredient for modeling carbon subduction at lower mantle conditions. Our complementary first-principles calculations verified the far-infrared vibrational response of the ambient-and high-pressure dolomite phases.
We investigate the evolution of the three‐dimensional thermal structure of a palaeo‐subduction channel exposed in the Penninic units of the central Tauern Window (Eastern Alps). Structural and petrological observations reveal a sheath fold with an amplitude of some 20 km that formed under high‐P conditions (~2 GPa). The fold is a composite structure that isoclinally folded the thrust of an ophiolitic nappe derived from Alpine Tethys Ocean onto a unit of the distal European continental margin, also affected by the high‐P conditions. This structural assemblage is preserved between two younger domes at either end of the Tauern Window. The domes deform isograds of the T‐dominated Barrovian metamorphism that itself overprints the high‐P metamorphism partly preserved in the sheath fold. Using Raman spectroscopy on carbonaceous material (RSCM), we are able to distinguish peak‐temperature domains related to the original subduction metamorphism from domains associated with the later temperature‐dominated (Barrovian) metamorphism. The distribution of RSCM temperatures in the Barrovian domain indicates a lateral and vertical decrease of peak temperature with increasing distance from the centres of the thermal domes. This represents a downward increase of palaeo‐temperature, in line with previous studies. However, we observe the opposite palaeo‐temperature trend in the lower limb of the sheath fold, namely an upward increase. We interpret this inverted palaeo‐temperature domain as the relic of a subduction‐related temperature field. Towards the central part of the sheath fold's upper limb, RSCM temperatures increase to a maximum of ~520°C. Further upsection in the hangingwall of the sheath fold, palaeo‐peak temperatures decrease to where they are indistinguishable from the peak temperatures of the overprinting Barrovian metamorphism. Peak‐temperature contours of the subduction‐related metamorphism are oriented roughly parallel to the folded nappe contacts and lithological layering. The contours close towards the northern, western and eastern parts of the fold, resulting in an eye‐shaped, concentric pattern in cross‐section. The temperature contour geometry therefore mimics the fold geometry itself, indicating that these contours were also folded in a sheath‐like manner. We propose that this sheath‐like pattern is the result of a two‐stage process that reflects a change of the mode of nappe formation in the subduction zone from thrusting to fold nappe formation. First, thrusting of a hot oceanic nappe onto a colder continental nappe created an inverted peak‐thermal gradient. Second, sheath folding of this composite nappe structure together with the previously established peak‐temperature pattern during exhumation. This pattern was preserved because temperatures decreased during retrograde exhumation metamorphism and remained less than the subduction‐related peak temperatures during the later Barrovian overprint. The fold ascended with diapir‐like kinematics in the subduction channel.
<p>The Adula nappe in the Swiss-Italian Central Alps is a continental basement nappe from the former European margin that was subducted to depths indicating (ultra)-high-pressure conditions. Many studies were performed to understand the pressure-temperature-time evolution of the Adula nappe. However, the pressure data derived from classical thermobarometry from eclogite and garnet peridotite lenses cannot be correlated with the tectonic record without several difficulties. The pressure gradient is very high, the structural record for the often suggested extrusion model is missing and the directly surrounding nappes show consistently lower pressures. Furthermore, it was discovered that at least parts of the Adula nappe underwent eclogite-facies metamorphism during the Variscan and the Alpine orogenic cycles. These two cycles were distinguished by age dating and the chemical zonation patterns of garnet, although in some cases it can be ambiguous. Otherwise, the Variscan and Alpine parageneses are hardly, if at all, possible to tell apart. Therefore, existing pressure and temperature data that were obtained using classical geobarometers rely on mineral equilibria, which may not have yielded true Alpine metamorphic conditions.</p> <p>For this study, around fifty felsic and metabasic samples were collected from different lithologies on a N-S transect through the Adula nappe parallel to the direction of subduction. Raman spectroscopy on quartz inclusions (RSQI) in garnet was used as a geobarometer to measure minimum peak pressures. The advantages of this method are its independence of a chemical equilibrium and the ability to yield reliable pressure constraints even if the high-pressure mineral assemblage has been retrogressed. The Variscan and Alpine garnet domains were carefully identified using the Electron Microprobe (EMP) and the Scanning Electron Microscopy (SEM). Temperatures were determined by means of Zr-in-rutile thermometry by measuring the Zr content with EMP.</p> <p>As a result, the obtained temperatures exhibit a gradient increasing from the north at ca. 500-550 <sup>o</sup>C to the south at around 700 <sup>o</sup>C. The minimum peak pressures in the northern and central Adula nappe range between 2.09 GPa and 2.17 GPa for metasediments and 1.41 GPa and 2.02 GPa for metabasites. 1.53 GPa were determined for an orthogneiss from the central part of the nappe. Lower pressures between 1.14 GPa and 1.31 GPa in the southern Adula nappe were potentially caused by viscous relaxation of the quartz inclusions during the high-temperature Lepontine metamorphism. Our new pressure data imply a very weak pressure gradient. Therefore, it is in contrast to the results of previous works, in which barometers based on a chemical equilibrium were applied. Additionally, no systematic difference in minimum peak pressures is observable for the different lithologies.</p>
<p>Following a tectonic scheme proposed by Jan&#225;k et al. (2011; Journal of Metamorphic Geology 29, 317-332) and Pleuger et al. (2011; Zeitschrift der Deutschen Gesellschaft f&#252;r Geowissenschaften 162, 171-192), the Rhodopes are composed of four nappe complexes, from bottom to top the Lower, Middle, and Upper Allochthon and the Circum-Rhodope Belt. Rocks derived from Adria and/or Pelagonia (Lower Allochthon) are separated from rocks of European origin (Upper Allochthon) by lithologically variegated thrust sheets containing sporadic occurrences of ophiolites (Middle Allochthon). These ophiolites typically yield magmatic protolith ages of c. 160 Ma and were metamorphosed under amphibolite- to eclogite-facies conditions. They represent Neotethyan lithosphere subducted below Europe in the Late Cretaceous to Palaeogene whereas the Circum-Rhodope Belt contains ophiolites of the same protolith age but with lower metamorphic grade (greenschist facies at most) and was obducted onto the former European margin in the Jurassic. We present LA-ICP-MS U-Pb zircon and additional geochemical data from the Luda Reka Unit in the Bulgarian Eastern Rhodopes. This unit consists mostly of amphibolite, metagabbro, and metadiorite that yielded two protolith ages of 163.5&#177;2.6 Ma and 154.2&#177;1.0 Ma. The trace element patterns resemble those of typical back-arc basalts and lower oceanic crustal cumulates. Initial epsilon Nd values of six samples calculated to 154 Ma were +10.8 &#177;0.8 (2&#963;; n = 6), in agreement with average basalts derived from depleted ambient mantle. A pegmatite crosscutting the Luda Reka Unit yielded a magmatic age of 52.04&#177;1.1 Ma. Such pegmatites are widespread in the Luda Reka Unit (Middle Allochthon) suggesting that emplacement of this unit over the Bjala Reka Orthogneiss Unit (Lower Allochthon) where such pegmatites are lacking happened only after c. 52 Ma. The Bjala Reka Orthogneiss Unit forms the footwall of the top-to-the-SSW Bjala Reka Detachment that became active in the Late Eocene. Where the Luda Reka Unit is lacking, the Bjala Reka Orthogneiss Unit is overlain by rocks that were collectively described as &#8220;Low-grade Mesozoic Unit&#8221; (e.g. Bonev & Stampfli 2008; Lithos 100, 210-233). Based on peak temperatures determined by Raman spectroscopy of organic matter, two tectonic units can be distinguished in the &#8220;Low-grade Mesozoic Unit&#8221;. The temperature peak was at c. 530 &#176;C in the Mandrica Unit below and at c. 285 &#176;C in the Maglenica Unit above. For the Mandrica Unit, minimum peak pressures of c. 1.4 GPa were obtained by Raman spectroscopy of quartz inclusions in garnet, indicating that this unit underwent subduction-related metamorphism. Because of this marked difference in peak metamorphic grade, we attribute only the anchimetamorphic Maglenica Unit to the Circum-Rhodope Belt while the high-pressure Mandrica Unit probably represents the Upper Allochthon. Both units are presently separated by the top-to-the-NW Mandrica Detachment that was active before the Bjala Reka Detachment. Our new findings show that the easternmost Rhodopes expose a condensed section through all four nappe complexes, notably including the Neotethys suture.</p>
<p>The Adula nappe is located at the eastern flank of the Lepontine dome in the Swiss Alps. It consists mainly of orthogneiss and paragneiss with intercalated lenses of eclogite, amphibolite and metasediments. Previous petrological studies on the peak pressure and temperature (P-T) conditions yield somewhat inconsistent results, particularly the pressure in the southern part of the nappe, but in general exhibit an increasing trend in both P-T towards the south. In this work, we applied zirconium-in-rutile thermometer and quartz-in-garnet Raman elastic barometer to constrain the P-T conditions using samples covering most of the nappe with high spatial coverage within the 600 km<sup>2</sup> area to obtain an internally consistent dataset. Based on the results of zirconium-in-rutile thermometer, the temperature gradually increases from the north at ca. 540 &#176;C to the south at ca. 680 &#176;C. Using the quartz-in-garnet elastic barometer, the calculated entrapment pressure increases from ca. 2.0 GPa to ca. 2.2 GPa from the north to the middle-south region of the Adula nappe, but rapidly falls to ca. 0.8-1.2 GPa towards the southern region, where the temperature exceeds ca. 650 &#176;C. It is speculated that due to the temperature increase towards the south, viscous relaxation became activated that led to an apparent drop of the recorded residual quartz inclusion pressure. This suggests that by applying a pure elastic model to high temperature conditions, one may potentially underestimate of the formation pressure of garnets. Therefore, this study may provide information on the limit of the quartz-in-garnet (pure) elastic barometry technique. Moreover, it may offer a potential opportunity to constrain the duration of the near-isothermal decompression path if a viscoelastic model can be applied, which requires not only the equation of state of minerals but also the creep behavior of the inclusion-host system.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.