Agricultural practices can either contribute to pollinator decline or provide opportunities to support pollinator communities. At the landscape-scale, agriculture can have negative impacts on pollinators, especially pollinators that specialize on limited floral or nesting resources. While increasing floral resources at the field-scale is positive for pollinator communities, little is known about how it affects specialist bees that depend on a specific pollen source (oligoleges). We studied pollinators on small-scale farms that contrasted in crop diversity (monocultures vs. polycultures), embedded in the intensively managed agriculture region of the San Joaquin Valley in California, to understand how wild bee communities and specialist bees would respond to field-scale diversification practices. We used squash (Cucurbita pepo) as our focal crop, because it is visited by both specialist pollinators, "squash bees" in the genera Peponapis and Xenoglossa, and by generalist bees like those in the genera Apis and Agapostemon. We hypothesized that there would be a greater number of squash bees on monoculture farms, which have abundant squash flowers, than on polyculture farms. Contrary to our predictions, we found that increasing the number of non-squash floral resources at the field-scale in agroecosystems supports a greater abundance of squash bees but has no effect on the diversity of bees visiting squash flowers. This pattern of increased abundance was consistent for other wild bees and the total number of bees (i.e., including honey bees), but not for honey bee abundance alone. Further, the abundance of pollinators increased or remained the same on polyculture farms throughout the morning while decreasing on monoculture farms, suggesting that as squash flowers start to close in midmorning, bees on the monocultures go elsewhere because no other floral resources co-occur. However, they remain on the polycultures where other resources co-occur. Thus, on-farm diversification may be an important refuge for both specialist bees and other pollinator species that are vulnerable to floral resource simplification as a result of development, especially through monoculture agriculture.
Bees visit native and non-native plant species for pollen and nectar resources in urban, agricultural, and wildland environments. Results of an extensive survey of bee-flower collection records from 10 California cities from 2005-2011 were used to examine host-plant records of native and non-native ornamental plants to diverse native and non-native bee species; five cities were from northern California and five were from southern California. A total of 7,659 bees and their floral host plants were examined. Of these, 179 were Apis mellifera and 7,390 were non-Apis. Only four other non-native species (all in Megachilidae) were recorded in the survey, and together they accounted for 402 individuals. These bees have been databased in preparation for deposition in the University of California-Berkeley Essig Museum of Entomology. We identified 229 bee species and 42 genera visiting native and non-native plant types in urban areas. Of the 229 species, 71 bee species were collected from only native plants; 52 were collected from only non-native host plants; and 106 were collected from both types of plants. Native bee species were common on native plants and non-native plants, but there were substantially more non-native bee species visiting non-native plants compared to native plants. Flowering periods in months were similar for both types of plants, but non-natives tended to flower later in the year. We propose that using native and non-native plants improves habitat gardening by increasing opportunities for attracting a richer diversity of bee species and for longer periods. Knowing basic bee-flower relationships in an area is key to planning a bee habitat garden with a variety of plant types, regardless of their geographic origin.
Understanding relationships between organisms and the ecosystem services they provide is crucial for predicting the impacts of continued biodiversity changes. Functional traits of organisms can affect ecosystem properties and are thus increasingly used to predict long‐term ecosystem functioning. Bees are ideal taxa for using functional approaches given their role in pollination for many plant species and wide diversity of traits. Although distributions of bee functional traits are being documented in the literature, there is a clear lack of understanding of how they relate to ecosystem functioning (i.e. pollination). To address this knowledge gap, we conducted a meta‐regression analysis with the following objectives: (1) quantify the effects of bee functional traits on pollination and (2) assess sources of heterogeneity to identify variables that might explain variation across studies. Seventeen studies met our criteria for inclusion, yielding 45 individual effect sizes for six traits (body size, tongue length, diet breadth, nesting, parasitism, and sociality). Overall, bee functional traits had a significant effect on pollination; however, effect sizes were weak with high variability across studies. Sources of heterogeneity included the metrics used to quantify pollination, the number of bee genera analysed in a study, and whether traits were measured categorically or continuously. These results indicate a need for more research to improve understanding of trait–pollination relationships. For some bee traits, effects on pollination may be dependent on other factors like bee abundance, environmental context, and the plant species evaluated in studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.