Data on the KIT mutation rate in melanoma in the central European region is missing. Accordingly, in a cohort of 79 BRAF/ NRAS double wild type cutaneous melanoma and 17 mucosal melanoma KIT mutation was assessed by Sanger sequencing of exons 9,11,13,17 and 18. In this cutaneous melanoma cohort KIT mutation frequency was found to be 34/79 (43.04%) with a significantly higher rate in acrolentiginous melanoma (ALM) as compared to UV-induced common variants (20/34, 58.8% versus 14/45, 31.1%, p = 0.014). In the double wild type mucosal melanoma cohort the KIT mutation frequency was found to be comparable (41.2%). The actual frequency of KIT mutation in the original 227 patient cutaneous melanoma cohort was 34/ 227, 14.9%. Exon 11 was the most frequent mutation site (44.7%) followed by exon 9 (21.1%) equally characterizing UVinduced common histotypes and ALM tumors. In mucosal melanoma exon 9 was the most frequently involved exon followed by exon 13 and 17. KIT mutation hotspots were identified in exon 9 (c482/491/492), in exon 11 (c559,c572, c570), in exon 13 (c642), in exon 17 (c822) and in exon 18 (c853). The relatively high KIT mutation rate in cutaneous melanoma in this central-European cohort justifies regular testing of this molecular target in this entity, not only in mucosal variants.
Hydatid cyst is usually located in the liver and lungs, rare cases showing localization in other organs or tissues. In the unusual location, echinococcosis is an excluding diagnosis that is established only after microscopic evaluation. Our first case occurred in a 67-year-old female previously diagnosed with pulmonary tuberculosis and hospitalized with persistent pain in the hip joint. The clinical diagnosis was tuberculosis of the joint, but the presence of the specific acellular membrane indicated a hydatid cyst of the synovial membrane, without bone involvement. Fewer than 25 cases of joint hydatidosis have been reported in literature to date. In the second case, the intramural hydatid cyst was incidentally discovered at autopsy, in the left heart ventricle of a 52-year-old male hospitalized for a fatal brain hemorrhage, as a result of rupture of an anterior communicating artery aneurysm. The conclusion of our paper is that echinococcosis should be taken into account for the differential diagnosis of cystic lesions, independently from their location.
Malignant melanoma (MM) is a highly heterogenic tumor whose histological diagnosis might be difficult. This study aimed to investigate the diagnostic and prognostic utility of the conventional pan-melanoma cocktail members (HMB-45, melan-A and tyrosinase), in conjunction with SOX10 and SOX11 immunohistochemical (IHC) expression. In 105 consecutive cases of MMs and 44 of naevi, the IHC examination was performed using the five-abovementioned markers, along with microphthalmia transcription factor (MITF), S100, and Ki67. Correlation with the clinicopathological factors and a long-term follow-up was also done. Survival analysis was performed with Kaplan–Meier curves and compared with TCGA public datasets. None of the 44 naevi expressed SOX11, but its positivity was seen in 52 MMs (49.52%), being directly correlated with lymphovascular invasion, the Ki67 index, and SOX10 expression. HMB-45, SOX10, and tyrosinase, but not melan-A, proved to differentiate the naevi from MMs successfully, with high specificity. Triple MITF/SOX10/SOX11 co-expression was seen in 9 out of 15 negative conventional pan-melanoma-cocktail cases. The independent prognostic value was proved for the conventional pan-melanoma cocktail (triple positivity for HMB-45, melan-A, and tyrosinase) and, independently for HMB-45 and tyrosinase, but not for melan-A, SOX10, or SOX11. As consequence, to differentiate MMs from benign naevi, melan-A should be substituted by SOX10 in the conventional cocktail. Although the conventional pan-melanoma cocktail, along with S100 can be used for the identification of melanocytic origin of tumor cells and predicting prognosis of MMs, the conventional-adapted cocktail (triple positivity for HMB-45, SOX10, and tyrosinase) has a slightly higher diagnostic specificity. SOX11 can be added to identify the aggressive MMs with risk for lymphatic dissemination and the presence of circulating tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.