The rise of autonomous systems in cities, such as automated vehicles (AVs), requires new approaches for prototyping and evaluating how people interact with those systems through context-based user interfaces, such as external human-machine interfaces (eHMIs). In this paper, we present a comparative study of three prototype representations (real-world VR, computer-generated VR, real-world video) of an eHMI in a mixed-methods study with 42 participants. Quantitative results show that while the real-world VR representation results in higher sense of presence, no significant differences in user experience and trust towards the AV itself were found. However, interview data shows that participants focused on different experiential and perceptual aspects in each of the prototype representations. These differences are linked to spatial awareness and perceived realism of the AV behaviour and its context, affecting in turn how participants assess trust and the eHMI. The paper offers guidelines for prototyping and evaluating context-based interfaces through simulations.
CCS CONCEPTS• Human-centered computing → HCI design and evaluation methods.
In this article, we report on the design and evaluation of an external human-machine interface (eHMI) for a real autonomous vehicle (AV), developed to operate as a shared transport pod in a pedestrianized urban space. We present insights about our human-centered design process, which included testing initial concepts through a tangible toolkit and evaluating 360-degree recordings of a staged pick-up scenario in virtual reality. Our results indicate that in complex mobility scenarios, participants filter for critical eHMI messages; further, we found that implicit cues (i.e., pick-up manoeuvre and proximity to the rider) influence participants' experience and trust, while at the same time more explicit interaction modes are desired. This highlights the importance of considering interactions with shared AVs as a service more holistically, in order to develop knowledge about AV-pedestrian interactions in complex mobility scenarios that complements more targeted eHMI evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.