The present paper proposes a fractal analysis of the Covid-19 dynamics in 45 European countries. We introduce a new idea of using the box-counting dimension of the epidemiologic curves as a means of classifying the Covid-19 pandemic in the countries taken into consideration. The classification can be a useful tool in deciding upon the quality and accuracy of the data available. We also investigated the reproduction rate, which proves to have significant fractal features, thus enabling another perspective on this epidemic characteristic. Moreover, we studied the correlation between two meteorological parameters: global radiation and daily mean temperature and two Covid-19 indicators: daily new cases and reproduction rate. The fractal dimension differences between the analysed time series graphs could represent a preliminary analysis criterion, increasing research efficiency. Daily global radiation was found to be stronger linked with Covid-19 new cases than air temperature (with a greater correlation coefficient -0.386, as compared with -0.318), and consequently it is recommended as the first-choice meteorological variable for prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.