The paper presents an innovative method for tourist route planning inside a destination. The necessity of reorganizing the tourist routes within a destination comes as an immediate response to the Covid-19 crisis. The implementation of the method inside tourist destinations can be an important advantage in transforming a destination into a safer destination in times of Covid-19 and post-Covid-19. The existing trend of shortening the tourist stay length has been accelerated while the epidemic became a pandemic. Moreover, the wariness for future pandemics has brought to the spotlight the issue of overcrowded attractions inside a destination at certain moments. The method proposed in this paper proposes a backtracking algorithm, more precisely an adaptation of the travelling salesman problem. The method presented aims to facilitate the navigation inside a destination and to revive certain less-visited sightseeing spots inside a destination while facilitating the social distancing measures imposed by Covid-19.
The paper presents an innovative method for tourist route planning inside a destination. The necessity of reorganizing the tourist routes within a destination comes as an immediate response to the Covid-19 crisis. The implementation of the method inside tourist destinations can bring an important advantage in transforming a destination into a safer one in times of Covid-19 and post-Covid-19. The existing trend of shortening the tourist stay length has been accelerated while the epidemic became a pandemic. Moreover, the wariness for future pandemics has brought into spotlight the issue of overcrowded attractions inside a destination at certain moments. The method presented in this paper proposes a backtracking algorithm, more precisely an adaptation of the travelling salesman problem. The method presented is aimed to facilitate the navigation inside a destination and to revive certain less-visited sightseeing spots inside a destination while facilitating conformation with the social distancing measures imposed for Covid-19 control.
The present paper proposes a fractal analysis of the Covid-19 dynamics in 45 European countries. We introduce a new idea of using the box-counting dimension of the epidemiologic curves as a means of classifying the Covid-19 pandemic in the countries taken into consideration. The classification can be a useful tool in deciding upon the quality and accuracy of the data available. We also investigated the reproduction rate, which proves to have significant fractal features, thus enabling another perspective on this epidemic characteristic. Moreover, we studied the correlation between two meteorological parameters: global radiation and daily mean temperature and two Covid-19 indicators: daily new cases and reproduction rate. The fractal dimension differences between the analysed time series graphs could represent a preliminary analysis criterion, increasing research efficiency. Daily global radiation was found to be stronger linked with Covid-19 new cases than air temperature (with a greater correlation coefficient -0.386, as compared with -0.318), and consequently it is recommended as the first-choice meteorological variable for prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.