Structure-controlled synthesis of gold nanostructures (AuNSs) induced by temperature in a nonaqueous urea-choline chloride deep eutectic solvent (DES) is reported. Modulation of nanostructures with welldefined structures and shapes is obtained by simply varying the reaction temperature. The supramolecular soft template provided by the DES structure and its viscosity at different temperatures drives directed growth of crystalline gold and self-assembly producing star-shaped AuNSs. Additionally, the effect of AuNS shape and surface area on their catalytic activity towards the reduction of hydrogen peroxide (H 2 O 2 ) has been tested. With the advantage of their high surface area and presence of highindex facets in the edge of the star arms, the star-shaped nanostructures showed superior electrocatalytic activity than other morphologies. The use of DES as a green chemistry platform for the synthesis of shape-controlled Au nanostructures with high catalytic properties may offer new avenues for fuel cell and biosensor applications.
Molecular relaxations of chitosan films have been investigated in the wide frequency range of 0.1 to 3 × 10(9) Hz from -10 °C to 110 °C using dielectric spectroscopy. For the first time, two high-frequency relaxation processes (in the range 10(8) to 3 × 10(9) Hz) are reported in addition to the low frequency relaxations α and β. These two relaxation processes are related to the vibrations of OH and NH2/NH3(+), respectively. The high-frequency relaxations exhibit Arrhenius-type dependencies in the temperature range 10 °C to 54 °C with negative activation energy; this observation is traceable to hydrogen bonding reorientation. At temperatures above the glass transition temperature (54 °C), the activation energy changes from negative to positive values due to breaking of hydrogen bonding and water loss. Upon cooling in a sealed environment, the activation energies of two relaxation processes are nearly zero. FTIR and XRD analyses reveal associated structural changes upon heating and cooling. These two new high-frequency relaxation processes can be attributed to the interaction of bound water with OH and NH2/NH3(+), respectively. A plausible scenario for these high-frequency relaxations is discussed in light of impedance spectroscopy, TGA, FTIR and XRD measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.