BackgroundMany edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains.MethodsThe broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods.ResultsAll tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepsis, Lactuca.carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes.ConclusionThese results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes.
The emergence of pathogenic multidrug-resistant bacteria demands new approaches in finding effective antibacterial agents. Synthetic flavonoids could be a reliable solution due to their important antimicrobial activity. We report here the potent in vitro antibacterial activity of ClCl-flav—a novel synthetic tricyclic flavonoid. The antimicrobial effects were tested using the minimum inhibitory concentration (MIC), time kill and biofilm formation assays. Fluorescence microscopy and scanning electron microscopy were employed to study the mechanism of action. MTT test was used to assess the cytotoxicity of ClCl-flav. Our results showed that Gram positive bacteria were more sensitive (MIC = 0.24 μg/mL) to ClCl-flav compared to the Gram negative ones (MIC = 3.9 μg/mL). We found that our compound showed significantly enhanced antibacterial activities, 32 to 72-fold more active than other synthetic flavonoids. ClCl-flav showed bactericidal activity at concentrations ranging from 0.48 to 15.62 μg/mL. At twice the MIC, all Escherichia coli and Klebsiella pneumoniae cells were killed within 1 h. Also ClCl-flav presented good anti-biofilm activity. The mechanism of action is related to the impairment of the cell membrane integrity. No or very low cytotoxicity was evidenced at effective concentrations against Vero cells. Based on the strong antibacterial activity and cytotoxicity assessment, ClCl-flav has a good potential for the design of new antimicrobial agents.
BackgroundThe present study was designed to investigate the antibacterial activities of the methanol extracts of four Cameroonian edible plants, locally used to treat microbial infections, and their synergistic effects with antibiotics against a panel of twenty nine Gram-negative bacteria including Multi-drug resistant (MDR) phenotypes expressing active efflux pumps.MethodsThe broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of the extracts [alone and in the presence of the efflux pumps inhibitor (EPI) Phenylalanine-Arginine β-Naphtylamide (PAβN)], and those of antibiotics in association with the two of the most active ones, Piper nigrum and Telfairia occidentalis. The preliminary phytochemical screening of the extracts was conducted according to the standard phytochemical methods.ResultsPhytochemical analysis showed the presence of alkaloids and flavonoids in all studied extracts. Other chemical classes of secondary metabolites were selectively present in the extracts. The results of the MIC determination indicated that the crude extracts from P. nigrum and V. amygdalina were able to inhibit the growth of all the twenty nine studied bacteria within a concentration range of 32 to 1024 μg/mL. At a similar concentration range (32 to 1024 μg/mL) the extract from T. occidentalis inhibited the growth of 93.1% of the tested microorganisms. At MIC/2 and MIC/5, synergistic effects were noted between the extracts from P. nigrum and T. occidentalis and seven of the tested antibiotics on more than 70% of the tested bacteria.ConclusionThe overall results of the present study provide information for the possible use of the studied edible plants extracts in the control of bacterial infections including MDR phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.