Antitumor and immunotropic effects of κ-, λ-carrageenan from red marine algae Chondrus armatus and their low-molecular weight (LMW) degradation products were explored. Effects on human esophageal cancer cell lines KYSE30 and FLO1 viability and ability to induce production of pro-and anti-inflammatory cytokines by human monocytes was assessed. All polysaccharides demonstrated antimetabolic and cytostatic activity towards cancer lines, with high-molecular weight carrageenans possessing higher antimetabolic and lower cytostatic activity than their LMW degradation products. All carrageenans induced monocytes to produce pro-inflammatory cytokines IL1β, IL6, IL18, and TNFα. However, secretion of anti-inflammatory cytokine IL10 was induced only by LMW λ-carrageenan, which exhibited the highest cytokine production inducing efficacy overall. We demonstrate that LMW carrageenan degradation products not only retain biological activity of their precursors, but also increase their efficacy in type-dependent manner, allowing for their future development for pharmacological practice.
K E Y W O R D Santitumor activity, carrageenan, Chondrus armatus, immunotropic activity
Photodynamic therapy (PDT) represents a powerful avenue for anticancer treatment. PDT relies on the use of photosensitizers—compounds accumulating in the tumor and converted from benign to cytotoxic upon targeted photoactivation. We here describe (3S,4S)-14-Ethyl-9-(hydroxymethyl)-4,8,13,18-tetramethyl-20-oxo-3-phorbinepropanoic acid (ETPA) as a major metabolite of the North Pacific brittle stars Ophiura sarsii. As a chlorin, ETPA efficiently produces singlet oxygen upon red-light photoactivation and exerts powerful sub-micromolar phototoxicity against a panel of cancer cell lines in vitro. In a mouse model of glioblastoma, intravenous ETPA injection combined with targeted red laser irradiation induced strong necrotic ablation of the brain tumor. Along with the straightforward ETPA purification protocol and abundance of O. sarsii, these studies pave the way for the development of ETPA as a novel natural product-based photodynamic therapeutic.
There have been few reports on the diversity and prevalence of parasitic fauna of the endangered Siberian tiger, which inhabits the territory of the Russian Far East. The present review attempts to summarize the information about the parasitic fauna of wild Siberian tigers, which includes 15 helminths and 3 protozoan species. The most prevalent parasitic species was found to be Toxocara cati, followed by Toxascaris leonina. Another commonly recorded Platyhelminth species is Paragonimus westermani, which causes a lethal infection of the lung parenchyma in Siberian tigers. However, the information about infections by this fluke in the Siberian tigers is scarce, although P. westermani infections pose a serious health hazard to tiger populations. The nematodes Aelurostrongylus abstrusus and Thominx aerophilus are found in Siberian tigers with an occurrence rate of 2.3% and 19%, respectively. The information on the parasitic infestations of captive populations of Siberian tigers is also presented along with the sources of infection and hazards for the wild tiger populations in their natural environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.