If science were a game, a dominant rule would probably be to collect results that are statistically significant. Several reviews of the psychological literature have shown that around 96% of papers involving the use of null hypothesis significance testing report significant outcomes for their main results but that the typical studies are insufficiently powerful for such a track record. We explain this paradox by showing that the use of several small underpowered samples often represents a more efficient research strategy (in terms of finding p < .05) than does the use of one larger (more powerful) sample. Publication bias and the most efficient strategy lead to inflated effects and high rates of false positives, especially when researchers also resorted to questionable research practices, such as adding participants after intermediate testing. We provide simulations that highlight the severity of such biases in meta-analyses. We consider 13 meta-analyses covering 281 primary studies in various fields of psychology and find indications of biases and/or an excess of significant results in seven. These results highlight the need for sufficiently powerful replications and changes in journal policies.
The designing, collecting, analyzing, and reporting of psychological studies entail many choices that are often arbitrary. The opportunistic use of these so-called researcher degrees of freedom aimed at obtaining statistically significant results is problematic because it enhances the chances of false positive results and may inflate effect size estimates. In this review article, we present an extensive list of 34 degrees of freedom that researchers have in formulating hypotheses, and in designing, running, analyzing, and reporting of psychological research. The list can be used in research methods education, and as a checklist to assess the quality of preregistrations and to determine the potential for bias due to (arbitrary) choices in unregistered studies.
BackgroundThe widespread reluctance to share published research data is often hypothesized to be due to the authors' fear that reanalysis may expose errors in their work or may produce conclusions that contradict their own. However, these hypotheses have not previously been studied systematically.Methods and FindingsWe related the reluctance to share research data for reanalysis to 1148 statistically significant results reported in 49 papers published in two major psychology journals. We found the reluctance to share data to be associated with weaker evidence (against the null hypothesis of no effect) and a higher prevalence of apparent errors in the reporting of statistical results. The unwillingness to share data was particularly clear when reporting errors had a bearing on statistical significance.ConclusionsOur findings on the basis of psychological papers suggest that statistical results are particularly hard to verify when reanalysis is more likely to lead to contrasting conclusions. This highlights the importance of establishing mandatory data archiving policies.
In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the generality of reporting errors in a random sample of recent psychological articles. Our results, on the basis of 281 articles, indicate that around 18% of statistical results in the psychological literature are incorrectly reported. Inconsistencies were more common in low-impact journals than in high-impact journals. Moreover, around 15% of the articles contained at least one statistical conclusion that proved, upon recalculation, to be incorrect; that is, recalculation rendered the previously significant result insignificant, or vice versa. These errors were often in line with researchers’ expectations. We classified the most common errors and contacted authors to shed light on the origins of the errors.
In this paper we elaborate on the potential of the lmer function from the lme4 package in R for item response (IRT) modeling. In line with the package, an IRT framework is described based on generalized linear mixed modeling. The aspects of the framework refer to (a) the kind of covariates -their mode (person, item, person-by-item), and their being external vs. internal to responses, and (b) the kind of effects the covariates have -fixed vs. random, and if random, the mode across which the effects are random (persons, items). Based on this framework, three broad categories of models are described: Item covariate models, person covariate models, and person-by-item covariate models, and within each category three types of more specific models are discussed. The models in question are explained and the associated lmer code is given. Examples of models are the linear logistic test model with an error term, differential item functioning models, and local item dependency models. Because the lme4 package is for univariate generalized linear mixed models, neither the two-parameter, and three-parameter models, nor the item response models for polytomous response data, can be estimated with the lmer function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.