Molecular detection of gastrointestinal protozoa is more sensitive and more specific than microscopy but, to date, has not routinely replaced time-consuming microscopic analysis. Two internally controlled real-time PCR assays for the combined detection of Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Dientamoeba fragilis in single faecal samples were compared with Triple Faeces Test (TFT) microscopy results from 397 patient samples. Additionally, an algorithm for complete parasitological diagnosis was created. Real-time PCR revealed 152 (38.3%) positive cases, 18 of which were double infections: one (0.3%) sample was positive for E. histolytica, 44 (11.1%) samples were positive for G. lamblia, 122 (30.7%) samples were positive for D. fragilis, and three (0.8%) samples were positive for Cryptosporidium. TFT microscopy yielded 96 (24.2%) positive cases, including five double infections: one sample was positive for E. histolytica/Entamoeba dispar, 29 (7.3%) samples were positive for G. lamblia, 69 (17.4%) samples were positive for D. fragilis, and two (0.5%) samples were positive for Cryptosporidium hominis/Cryptosporidium parvum. Retrospective analysis of the clinical patient information of 2887 TFT sets showed that eosinophilia, elevated IgE levels, adoption and travelling to (sub)tropical areas are predisposing factors for infection with non-protozoal gastrointestinal parasites. The proposed diagnostic algorithm includes application of real-time PCR to all samples, with the addition of microscopy on an unpreserved faecal sample in cases of a predisposing factor, or a repeat request for parasitological examination. Application of real-time PCR improved the diagnostic yield by 18%. A single stool sample is sufficient for complete parasitological diagnosis when an algorithm based on clinical information is applied.
Inoculation of an automated system for rapid identification (ID) and antimicrobial susceptibility testing (AST) directly from positive blood culture bottles will reduce the turnaround time of laboratory diagnosis of septicemic patients, which benefits clinical outcome and decreases patient costs. Direct test results, however, must always be confirmed by testing a pure overnight culture, which is the "gold standard." We studied the accuracy of direct testing versus repeat testing in order to investigate the possibility of refraining from repeat testing. We also assessed the clinical risk of reporting results based on direct testing only. We inoculated Vitek 2 (bioMérieux) directly from 410 positive BACTEC 9240 (BD) blood culture bottles containing gram-negative rods and studied the ID and AST results. In a comparison of direct inoculation with the standard method, a total of 344 isolates of Enterobacteriaceae and Pseudomonas aeruginosa were tested, and 93.0% were correctly identified. Of the 39 (10.2%) samples that contained bacilli not identifiable by Vitek 2, only 1 gave a conclusive, correct result. The overall MIC agreement among 312 isolates was 99.2%, with 0.8% very major and 0.02% major error rates. Of only three (polymicrobial) samples, the direct susceptibility pattern would be reported to the clinician as too sensitive. Vitek 2 results obtained from direct inoculation of blood culture bottles containing gram-negative bacilli are safe enough for immediate reporting, provided that ID and AST are consistent. Repeat testing is not necessary, unless Gram stain or overnight subculture results raise doubt about the purity of the culture.Shortening the turnaround time of microbiological analyses with an automated system for rapid identification and susceptibility testing of bacteria leads to a significant reduction of patient morbidity, mortality, and cost (1, 2). In particular, for patients with septicemia, rapid laboratory results are essential for appropriate treatment and improving clinical outcome (21). An automated blood culture system that monitors culture bottles for microbial growth minimizes the time necessary to detect positive blood cultures. Another way to save time might be to inoculate an automated system for rapid identification and susceptibility testing directly from positive blood culture bottles. The conventional way is to wait for the overnight subculture on agar to prepare a standard inoculum according to the manufacturer's guidelines.Of all bacteria involved in bloodstream infections, the fastgrowing Enterobacteriaceae will probably produce the quickest and best-correlating results for direct and standard inoculation. Several studies have compared direct and standard methods for different (combinations of) automated systems, but to our knowledge no study has yet done this for Vitek 2 (7,8,18,20,22).We routinely inoculate Vitek 2 directly from BACTEC 9240 blood culture bottles that are positive for gram-negative rods. To check the direct results, we repeat the tests the next day with suspe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.