We consider the risk model with capital injections studied by Nie et al. (2011, 2015). We construct a Gerber-Shiu function and show that whilst this tool is not efficient for finding the ultimate ruin probability, it provides an effective way of studying ruin related quantities in finite time. In particular, we find a general expression for the joint distribution of the time of ruin and the number of claims until ruin, and find an extension of Prabhu's (1961) formula for the finite time survival probability in the classical risk model. We illustrate our results in the case of exponentially distributed claims and obtain some interesting identities. In particular, we generalise results from the classical risk model and prove the identity of two known formulae for that model.
In this study, we consider the problem of zero claims in a liability insurance portfolio and compare the predictability of three models. We use French motor third party liability (MTPL) insurance data, which has been used for a pricing game, and show that how the type of coverage and policyholders’ willingness to subscribe to insurance pricing, based on telematics data, affects their driving behaviour and hence their claims. Using our validation set, we then predict the number of zero claims. Our results show that although a zero-inflated Poisson (ZIP) model performs better than a Poisson regression, it can even be outperformed by logistic regression.
Chen et al. (2014), studied a discrete semi-Markov risk model that covers existing risk models such as the compound binomial model and the compound Markov binomial model. We consider their model and build numerical algorithms that provide approximations to the probability of ultimate ruin and the probability and severity of ruin in a continuous time two-state Markov-modulated risk model. We then study the finite time ruin probability for a discrete m-state model and show how we can approximate the density of the time of ruin in a continuous time Markov-modulated model with more than two states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.