A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.
The existing multipath routing protocols for wireless sensor networks demonstrate the efficacy of traffic distribution over multiple paths to fulfill the Quality of Service (QoS) requirements of different applications. However, the performance of these protocols is highly affected by the characteristics of the wireless channel and may be even inferior to the performance of single-path approaches. Specifically, when multiple adjacent paths are being used concurrently, the broadcast nature of wireless channels results in inter-path interference which significantly degrades end-to-end throughput. In this paper, we propose a Low-Interference Energy-efficient Multipath Routing protocol (LIEMRO) to improve the QoS requirements of event-driven applications. In addition, in order to optimize resource utilization over the established paths, LIEMRO employs a quality-based load balancing algorithm to regulate the amount of traffic injected into the paths. The performance gain of LIEMRO compared to the ETX-based single-path routing protocol is 85%, 80%, and 25% in terms of data delivery ratio, end-to-end throughput, and network lifetime, respectively. Furthermore, the end-to-end latency is improved more than 60%.
-In the recent years, multipath routing techniques are recognized as an effective approach to improve QoS in Wireless Sensor Networks (WSNs). However, in most of the previously proposed protocols either the effects of inter-path interference are ignored, or establishing low-interference paths is very costly. In this paper, we propose a Low-Interference Energy-efficient Multipath ROuting protocol (LIEMRO) for WSNs. This protocol is mainly designed to improve packet delivery ratio, lifetime, and latency, through discovering multiple interference-minimized node-disjoint paths between source node and sink node. In addition, LIEMRO includes a load balancing algorithm to distribute source node's traffic over multiple paths based on the relative quality of each path. Simulation results show that using LIEMRO in high traffic load conditions can increase data reception rate and network lifetime even more than 1.5x compared with single path routing approach, while end-to-end latency reduces significantly. Accordingly, LIEMRO is a multipath solution for event-driven applications in which lifetime, reliability, and latency are of great importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.