Wood, due to its biological origin, has the capacity to interact with water.
Sorption/desorption of moisture is accompanied with swelling/shrinkage and
softening/hardening of its stiffness. The correct prediction of the behavior of
wood components undergoing environmental loading requires that the moisture
behavior and mechanical behavior of wood are considered in a coupled manner. We
propose a comprehensive framework using a fully coupled poromechanical
approach, where its multiscale implementation provides the capacity to take
into account, directly, the exact geometry of the wood cellular structure,
using computational homogenization. A hierarchical model is used to take into
account the subcellular composite-like organization of the material. Such
advanced modeling requires high resolution experimental data for the
appropriate determination of inputs and for its validation. High-resolution
x-ray tomography, digital image correlation, and neutron imaging are presented
as valuable methods to provide the required information
The pattern and extent of variation of microfibril angle (MFA) in normal and compression tracheids of softwood were investigated by using confocal laser scanning microscopy technique. All measurements support the idea that the orientation of microfibrils in single wood tracheids is not uniform. MFA of the radial wall of earlywood tracheids was highly non-uniform and had an approximately circular form of arrangement around the bordered pits (inside the border). Between the bordered pits the measured MFAs were less than the other parts of the tracheid. In the latewood tracheids MFA was less variable. The average orientation of simple pits in the crossfield region was consistent with the mean MFA of the tracheids; however some of the measurements showed a highly variable arrangement in the areas between the simple pits. In many cases the local measured MFAs of compression wood tracheids agreed with the orientation of natural helical cavities of compression wood. Comparing the measured results in different growth rings showed that MFAs in juvenile wood are generally larger than in perfect wood.
Single wood cells have complex tensile behavior. To gain insight into this complex functionality, the behavior of single wood tracheids was studied under controlled cyclic tensile loading. The cyclic tensile stress-strain curves show that beyond the yield point the tracheid undergoes permanent deformations and its rigidity increases. As in plasticity elastic (or visco-elastic) unloading takes place and energy is dissipated by permanent deformation. Consequently, single tracheids show a load-history dependent behavior. To understand the intervening mechanism in the process of elasto-plastic response of a wood tracheid, a micromechanical based model was developed. This model permits us to describe the influence of non-uniformity of microfibril angle (MFA) and other defects on the wood cell rigidity and to discuss different scenarios, which may occur during the tensile test. Successive damage of the hemicelluloses and lignin matrix and reduction of MFA as mainly responsible for elasto-plastic response of a wood cell were suggested. It should be noted that this paper is part of the research work which has been reported previously
Non-destructive neutron radiography is used to study the different processes of liquid transport in Scots pine sapwood and heartwood. The spatial and temporal changes in moisture content and saturation degree, measured at high resolution, are provided for water uptake in longitudinal, radial and tangential directions. Liquid uptake in sapwood, compared to in heartwood, is found to be faster and more homogeneous. Latewood cells are the preferential pathways for longitudinal and tangential uptake in both sapwood and heartwood resulting in strongly non-uniform water fronts. In radial uptake, water accumulates first in the border between growth layers. While the moisture content profiles vary strongly between earlywood and latewood layers, the corresponding swelling strain profiles change smoothly due to the mechanical interaction between the different layers. Long term experiments in laboratory show three phases of uptake: a first fast phase, a second slower phase and a third phase reaching capillary saturation. The main difference between sapwood and heartwood uptake takes place in the first phase when liquid is mainly transported in the lumen, until moisture reaches the top of the sample. After that, both wood types behave similarly, uptake is followed by a slower adsorption in the wood cell walls and liquid redistribution in perpendicular to the uptake direction until the sample is almost totally saturated. These findings are of interest for future studies on durability and treatability of pine sapwood and hardwood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.