Elastic material properties are one of the most important material characteristics in mechanical modelling. Wood with distinctively different properties in the longitudinal, radial and tangential directions exhibits a strong moisturedependent material characteristic in the elastic range. In order to characterise beech wood as an orthotropic material, all of the independent elastic properties were determined at different moisture conditions. These characteristic properties have never been determined before as a function of moisture content yet are vital to the field of wood modelling. All elastic parameters, except for some Poisson's ratios, show a decrease in stiffness with increasing moisture content. In comparison to available literature references at a moisture content of x & 12%, the identified values were of the same order of magnitude. The determined material properties can be used to investigate the mechanical behaviour of beech wood structures including different moisture conditions.
In view of its high density, yew wood has a remarkably low longitudinal Young's modulus, which makes it unique among coniferous woods. However, the elastic response of yew related to other load directions is largely unknown. Therefore, our goal was to comprehensively characterise the three-dimensional elastic behaviour of yew wood. To achieve this, we performed tensile tests on dogbone-shaped yew specimens and determined the three Young's moduli and six Poisson's ratios using a universal testing machine and a digital image correlation technique. All tests were also applied to spruce as reference species. After including the shear moduli determined in a prior study by our group, all elastic engineering parameters of yew and spruce were ascertained. Based on these values, the threedimensional elastic behaviour was describable with deformation bodies and polar diagrams. Evaluating these illustrations revealed that yew had a lower stiffness only in the longitudinal direction. In all other three-dimensional directions, spruce was clearly more compliant than yew. Particularly, in the radial-tangential plane, both species varied largely in their degree of anisotropic elasticity. All mentioned differences between yew and spruce originate at the microstructural level.
Thermal conductivity (ThCond), thermal diffusivity and heat capacity of Norway spruce (Picea abies wL.x Karst.) and European beech (Fagus sylvatica L.) have been determined for all principal directions -radial (R), tangential (T) and longitudinal (L) -depending on the moisture content (MC) and ThCond was additionally measured in 158 steps between these directions. The ThCond was determined in a guarded hot plate apparatus. For determining thermal diffusivity and heat capacity, the same apparatus was supplemented with thermocouples and the temperature evolution was evaluated numerically by a partial differential equation. The results show expectedly that ThCond increases with increasing MC, whereby the highest increment was observed in T and the lowest in L direction. ThCond is higher for beech than for spruce in all anatomical directions and the conductivity for both species is more than twice as high in L direction than perpendicular to grain. The highest ThCond is found for beech at a grain angle of approximately 158. The lowest ThCond shows spruce at an angle of approximately 608 between T and R direction. Thermal diffusivity is similar for both species and decreases with increasing MC. Its differences with regard to the anatomical directions correlate with those of the ThCond values. Heat capacity is lower for beech than for spruce and shows a clear increase with increasing MC.
Diffusion processes in samples of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies wL.x Karst.) were determined and quantified by means of neutron imaging (NI). The experiments were carried out at the neutron imaging facility NEUTRA at the Paul Scherrer Institute in Villigen (Switzerland) using a thermal neutron spectrum. NI is a non-destructive and non-invasive testing method with a very high sensitivity for hydrogen and thus water. Within the scope of this study, diffusion processes in the longitudinal direction were ascertained for solid wood samples exposed to a differentiating climate (dry side/wet side). With NI it was possible to determine the local distribution and consequently the total amount of water absorbed by the samples. The calculated values scarcely differ from those ascertained by weighing (F3%). The method yields profiles of the water content over the whole sample, thus allowing the local and temporal resolution of diffusion processes within the sample in the main transport direction (longitudinal). On the basis of these profiles, it was possible to calculate the diffusion coefficients along the fibre direction according to Fick's second law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.