Arginine-vasopressin and oxytocin, peptides which serve as putative precursors for neurotrophic fragments, were digested in the presence of the respective l*C-Tyr2-and l*C-GlyNH2g-labeled nonapeptides with a purified synaptic membrane preparation of rat brain. In this preparation aminopeptidase activity predominates in the conversion of these peptides. The disappearance of intact peptide and the release of free l*C-Tyr and l*C-GlyNH2 was followed simultaneously with time by HPLC. Oxytocin was about four times more resistant to proteolysis than arginine-vasopressin as measured by slower disappearance of intact oxytocin, and reflected by the slower release of l*C-Tyr, but not of '* C-GlyNH2 from oxytocin. Comparison of degradation rates of structure analogues showed that peptides having Ile in position 3, as oxytocin, were more resistant than analogues having Phe in position 3, as arginine-vasopressin. The data demonstrate that arginine-vasopressin and oxytocin differ markedly in susceptibility to the aminopeptidase activity in brain synaptic membranes, and indicate that this difference resides primarily in the amino acid residue in position 3. It is suggested that the difference in susceptibility may affect the pattern of neurotrophic metabolites in brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.