Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.
Recently it was shown that enzymatic and mechanical processing of macroscopic cellulose fibers lead to disintegration of long and entangled native cellulose I nanofibers in order to form mechanically strong aqueous gels (Pa ¨a ¨kko ¨et al., Biomacromolecules, 2007Biomacromolecules, , 8, 1934. Here we demonstrate that (1) such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, (2) they are flexible, unlike most aerogels that suffer from brittleness, and (3) they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogels show a high porosity of $98% and a very low density of ca. 0.02 g cm À3 . The flexibility of the aerogels manifests as a particularly high compressive strain of ca. 70%. In addition, the structure of the aerogels can be tuned from nanofibrillar to sheet-like skeletons with hierarchical micro-and nanoscale morphology and porosity by modifying the freeze-drying conditions. The porous flexible aerogel scaffold opens new possibilities for templating organic and inorganic matter for various functionalities. This is demonstrated here by dipping the aerogels in an electrically conducting polyaniline-surfactant solution which after rinsing off the unbound conducting polymer and drying leads to electrically conducting flexible aerogels with relatively high conductivity of around 1 Â 10 À2 S cm À1 . More generally, we foresee a wide variety of functional applications for highly porous flexible biomatter aerogels, such as for selective delivery/separation, tissue-engineering, nanocomposites upon impregnation by polymers, and other medical and pharmaceutical applications.
Herein we combine in a novel way the physical effect of porous structure of a cellulosic aerogel with the chemical effect of long alkyl tails by a well known homogeneous green esterification method, to achieve purely bio-based and highly water repellent cellulosic materials. As an alternative for a traditional fluoro derivatized hydrophobization, here long fatty acid tails are utilized to lower the surface energy. To minimize the process emission, ionic liquid (IL) 1-allyl-3-methylimidazolium chloride is used for the esterification, due to its non-volatility and recyclability. We have shown here that low degree of substitution (DS) of the fatty acid cellulose material enables the spontaneous formation of aerogels. Additionally, the very low content of the long stearoyl tails combined with the porous aerogel structure resulted in significant increase in hydrophobicity from an aqueous contact angle of 0 up to 124 . We foresee that this approach can allow sustainable and completely bio-based coatings and insulators paving the way for a new green application potential for cellulose based materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.