During acute inflammation, 3 neutrophil subsets are found in the blood: neutrophils with a conventional segmented nucleus, neutrophils with a banded nucleus, and T-cell-suppressing CD62L neutrophils with a high number of nuclear lobes. In this study, we compared the in vivo kinetics and proteomes of banded, mature, and hypersegmented neutrophils to determine whether these cell types represent truly different neutrophil subsets or reflect changes induced by lipopolysaccharide (LPS) activation. Using in vivo pulse-chase labeling of neutrophil DNA with 6,6-H-glucose, we found that H-labeled banded neutrophils appeared much earlier in blood than labeled CD62L and segmented neutrophils, which shared similar label kinetics. Comparison of the proteomes by cluster analysis revealed that CD62L neutrophils were clearly separate from conventional segmented neutrophils despite having similar kinetics in peripheral blood. Interestingly, the conventional segmented cells were more related at a proteome level to banded cells despite a 2-day difference in maturation time. The differences between CD62L and mature neutrophils are unlikely to have been a direct result of LPS-induced activation, because of the extremely low transcriptional capacity of CD62L neutrophils and the fact that neutrophils do not directly respond to the low dose of LPS used in the study (2 ng/kg body weight). Therefore, we propose CD62L neutrophils are a truly separate neutrophil subset that is recruited to the bloodstream in response to acute inflammation. This trial was registered at www.clinicaltrials.gov as #NCT01766414.
Key Points Neutrophil subsets circulating during acute inflammation are characterized by differential bacterial containment capacity. Adequate antimicrobial containment is associated with profound phagosomal acidification yet independent of reactive oxygen species.
Level II, etiologic study.
Myocardial infarction (MI) induces an inflammatory response in which neutrophils fulfill a prominent role. Mean neutrophil volume (MNV) represents the average size of the circulating neutrophil population. Our goal was to determine the effect of MI on MNV and investigate the mechanisms behind MNV elevation. MNV of 84 MI patients was compared with the MNV of 209 stable angina patients and correlated to simultaneously measured CK levels. Fourteen pigs were subjected to temporary coronary balloon occlusion and blood was sampled at multiple time points to measure MNV. Echocardiography was performed followed by ex vivo infarct size assessment after 72 h. MNV was higher in MI patients compared to stable angina patients (602 SD26 AU vs. 580 SD20 AU, p < 0.0001) and correlated with simultaneously measured CK levels (R = 0.357, p < 0.0001). In pigs, MNV was elevated post-MI (451 SD11 AU vs. 469 SD12 AU), p < 0.0001). MNV correlated with infarct size (R = 0.705, p = 0.007) and inversely correlated with left ventricular ejection fraction (R = −0.718, p = 0.009). Cell sorting revealed an increased presence of banded neutrophils after MI, which have a higher MNV compared to mature neutrophils post-MI (495 SD14 AU vs. 478 SD11 AU, p = 0.012). MNV from coronary sinus blood was higher than MNV of neutrophils from simultaneously sampled arterial blood (463 SD7.6 AU vs. 461 SD8.6 AU, p = 0.013) post-MI. The current study shows MNV is elevated and reflects cardiac damage post-MI. MNV increases due to altered neutrophil composition and systemic neutrophil activation. MNV may be an interesting parameter for prognostic assessment in MI and provide new insights into pathological innate immune responses evoked by ischemia–reperfusion.
Introduction. Flow cytometry markers have been proposed as useful predictors for the occurrence of posttraumatic inflammatory complications. However, currently the need for a dedicated laboratory and the labour-intensive analytical procedures make these markers less suitable for clinical practice. We tested an approach to overcome these limitations. Material and Methods. Neutrophils of healthy donors were incubated with antibodies commonly used in trauma research: CD11b (MAC-1), L-selectin (CD62L), FcγRIII (CD16), and FcγRII (CD32) in active form (MoPhab A27). Flow cytometric analysis was performed both on a FACSCalibur, a standard flow cytometer, and on a Cell-Dyn Sapphire, a routine haematology analyser. Results. There was a high level of agreement between the two types of analysers, with 41% for FcγRIII, 80% for L-selectin, 98% for CD11b, and even a 100% agreement for active FcγRII. Moreover, analysis on the routine haematology analyser was possible in less than a quarter of the time in comparison to the flow cytometer. Conclusion. Analysis of neutrophil phenotype on the Cell-Dyn Sapphire leads to the same conclusion compared to a standard flow cytometer. The markedly reduced time necessary for analysis and reduced labour intensity constitutes a step forward in implementation of this type of analysis in clinical diagnostics in trauma research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.