Serial analysis of gene expression (SAGE) was used to identify genes that might be involved in the development or growth of medulloblastoma, a childhood brain tumor. Sequence tags from medulloblastoma (10229) and fetal brain (10692) were determined. The distributions of sequence tags in each population were compared, and for each sequence tag, pairwise chi2 test statistics were calculated. Northern blot was used to confirm some of the results obtained by SAGE. For 16 tags, the chi2 test statistic was associated with a P value < 10(-4). Among those transcripts with a higher expression in medulloblastoma were the genes for ZIC1 protein and the OTX2 gene, both of which are expressed in the cerebellar germinal layers. The high expression of these two genes strongly supports the hypothesis that medulloblastoma arises from the germinal layer of the cerebellum. This analysis shows that SAGE can be used as a rapid differential screening procedure.
We have analyzed the response of a number of human cell lines to treatment with antisense oligodeoxynucleotides (ODNs) directed against RNA polymerase II, replication protein A, and Ha-ras. ODN-delivery to the cells was liposome-mediated or via electroporation, which resulted in dierent intracellular locations of the ODNs. The ODN-mediated target mRNA reduction varied considerably between the cell lines. In view of the essential role of RNase H activity in this response, RNase H was analyzed. The mRNA levels of RNase H1 and RNase H2 varied considerably in the cell lines examined in this study. The intracellular localization of the enzymes, assayed by green-¯uorescent protein fusions, showed that RNase H1 was present throughout the whole cell for all cell types analyzed, whereas RNase H2 was restricted to the nucleus in all cells except the prostate cancer line 15PC3 that expressed the protein throughout the cell. Whole cell extracts of the cell lines yielded similar RNase H cleavage activity in an in vitro liquid assay, in contrast to the ecacy of the ODNs in vivo. Overexpression of RNase H2 did not aect the response to ODNs in vivo. Our data imply that in vivo RNase H activity is not only due to the activity assayed in vitro, but also to an intrinsic property of the cells. RNase H1 is not likely to be a major player in the antisense ODN-mediated degradation of target mRNAs. RNase H2 is involved in the activity assayed in vitro. The presence of cell-type speci®c factors aecting the activity and localization of RNase H2 is strongly suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.