The photoreactive nucleotide 3'‐O‐(4‐benzoyl)benzoyl ADP (BzADP) is not a substrate for photophosphorylation but is a strong competitive inhibitor (K
i 2‐25μM) with respect to ADP and ATP in photophosphorylation or ATP hydrolysis and Pi‐ATP exchange reactions, respectively. The analog binds tightly to the membrane‐bound CF1, competes with the right binding of ADP, and prevents the inactivation of the enzyme by tight binding of ADP. Upon irradiation with long wavelength ultraviolet light, the tightly bound BzADP becomes covalently attached to both the α‐ and β‐subunits of the enzyme.
The ATP synthetase of chloroplast membranes binds ADP and ATP with high affinity, and the binding becomes quasi-irreversible under certain conditions. One explanation of the function of these nucleotides is that they are transiently tightly bound during ATP synthesis as part of the catalytic process, and that the release of tightly bound ATP from one catalytic site is promoted when ADP and P(i) bind to a second catalytic site on the enzyme. Alternatively, it is possible that the tightly bound nucleotides are not catalytic, but instead have some regulatory function. We developed steady-state rate equations for both these models for photophosphorylation and tested them with experiments where two alternative substrates, ADP and GDP, were phosphorylated simultaneously. It was impossible to fit the results to the equations that assumed a catalytic role for tightly bound nucleotides, whether we assumed that both ADP and GDP, or only ADP, are phosphorylated by a mechanism involving substrate-induced release of product from another catalytic site. On the other hand, the equations derived from the regulatory-site model that we tested were able to fit all the results relatively well and in an internally consistent manner. We therefore conclude that the tightly bound nucleotides most likely do not derive from catalytic intermediates of ATP synthesis, but that substrate (and possibly also product) probably bind both to catalytic sites and to noncatalytic sites. The latter may modulate the transition of the ATP-synthesizing enzyme complex between its active and inactive states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.