When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH.Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.
Collapsing glomerulopathy is a devastating renal disease that primarily affects African Americans and associates with numerous etiologies, such as HIV and autoimmune disease. The presence of APOL1 risk alleles associates with HIV-associated collapsing glomerulopathy, but it is unknown whether these risk alleles also associate with systemic lupus erythematosus (SLE) -associated collapsing glomerulopathy. Here, re-examination of 546 renal biopsies from African-American patients with SLE identified 26 cases of collapsing glomerulopathy, which we genotyped for APOL1 risk alleles using DNA extracted from archived biopsy tissue. APOL1 strongly associated with SLE-associated collapsing glomerulopathy (P,0.001). In a recessive model, two APOL1 risk alleles conferred 5.4-fold (95% CI=2.4 to 12.1) higher odds of developing SLE-associated collapsing glomerulopathy (P,0.001). In conclusion, APOL1 genotyping of African-American patients with SLE might help identify patients at risk for collapsing glomerulopathy, an entity with a poor prognosis that is often resistant to treatment.
Leukocyte chemotactic factor 2 amyloidosis (ALECT2) is a recently described form of amyloidosis that most frequently manifests clinically with progressive renal failure. In a series of 414 cases of amyloidosis, there were 40 cases of ALECT2: the second most common type of renal amyloidosis in this series. This was particularly common in Hispanic patients in the Southwest United States, where more than half of amyloidosis cases were ALECT2. It is possible that this represents a familial amyloidosis as there were two brothers with ALECT2 in our study. Morphologically, there was consistent amyloid deposition in the renal cortex with medullary involvement in only about a third of cases. There were no mutations detected in the LECT2 gene, although all patients tested were homozygous for the G nucleotide in a non-synonymous SNP at position 172. Most patients presented with chronic kidney disease and, on follow-up, showed progression with an average deterioration in renal function of 0.5 ml/min/1.73 m(2) per month. Unfortunately, the etiology of ALECT2 is currently unknown and there is currently no efficacious treatment of the disease.
Cardiotoxicity of doxorubicin (DOX) remains an important health concern. DOX cardiotoxicity is cumulative-dose-dependent and begins with the first dose of chemotherapy. No biomarker for presymptomatic detection of DOX cardiotoxicity has been validated. Our hypothesis is that peripheral blood cells (PBC) gene expression induced by the early doses of DOX-based chemotherapy could identify potential biomarkers for presymptomatic cardiotoxicity in cancer patients. PBC gene expression of 33 breast cancer patients was conducted before and after the first cycle of DOX-based chemotherapy. Cardiac function was evaluated before the start of chemotherapy and at its completion. Differentially expressed genes (DEG) of patients who developed DOX-associated cardiotoxicity after the completion of chemotherapy were compared with DEG of patients who did not. Ingenuity database was used for functional analysis of DEG. Sixty-sevens DEG (P<0.05) were identified in PBC of patients with DOX-cardiotoxicity. Most of DEG encode proteins secreted by activated neutrophils. The functional analysis of the DEG showed enrichment for immune- and inflammatory response. This is the first study to identify the PBC transcriptome signature associated with a single dose of DOX-based chemotherapy in cancer patients. We have shown that PBC transcriptome signature associated with one dose of DOX chemotherapy in breast cancer can predict later impairment of cardiac function. This finding may be of value in identifying patients at high or low risk for the development of DOX cardiotoxicity during the initial doses of chemotherapy and thus to avoid the accumulating toxic effects from the subsequent doses during treatment.
SummaryMany strains of mycobacteria produce two ferric chelating substances that are termed exochelin (an excreted product) and mycobactin (a cell-associated product). These agents may function as iron acquisition siderophores. To examine the genetics of the iron acquisition system in mycobacteria, ultraviolet (UV) and transposon (Tn611 ) mutagenesis techniques were used to generate exochelin-deficient mutants of Mycobacterium smegmatis strains ATCC 607 and LR222 respectively. Mutants were identified on CAS siderophore detection agar plates. Comparisons of the amounts of CAS-reactive material excreted by the possible mutant strains with that of the wild-type strains verified that seven UV mutant strains and two confirmed transposition mutant strains were deficient in exochelin production. Cell-associated mycobactin production in the mutants appeared to be normal. From the two transposon mutants, the mutated gene regions were cloned and identified by colony hybridization with an IS6100 probe, and the DNA regions flanking the transposon insertion sites were then used as probes to clone the wild-type loci from M. smegmatis LR222 genomic DNA. Complementation assays showed that an 8 kb Pst I fragment and a 4.8 kb Pst I/SacI subclone of this fragment complemented one transposon mutant (LUN2) and one UV mutant (R92). A 10.1 kb SacI fragment restored exochelin production to the other transposon mutant (LUN1). The nucleotide sequence of the 15.3 kb DNA region that spanned the two transposon insertion sites overlapped the 5Ј region of the previously reported exochelin biosynthetic gene fxbA and contained three open reading frames that were transcribed in the opposite orientation to fxbA. The corresponding genes were designated exiT, fxbB and fxbC. The deduced amino acid sequence of ExiT suggested that it was a member of the ABC transporter superfamily, while FxbB and FxbC displayed significant homology with many enzymes (including pristinamycin I synthetase) that catalyse non-ribosomal peptide synthesis. We propose that the peptide backbone of the siderophore exochelin is synthesized in part by enzymes resembling non-ribosomal peptide synthetases and that the ABC transporter ExiT is responsible for exochelin excretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.