SUMMARY Studies of nutrient cycling in forests span more than 100 yr. In earlier years, most attention was given to the measurement of the pools of nutrients in plants and soil and of the return of nutrients from plant to soil in litterfall. The past 20 yr or so have seen a major concentration on the processes of nutrient cycling, with particular emphasis on those processes by which the supply of nutrients to the growing forest is sustained. In the more highly productive forests, up to 10 tonnes of litter of low nutritional quality is deposited annually on the forest floor. The decomposition of this litter, the mineralization of the nutrients it holds, and the uptake of nutrients by tree roots in the carbon‐rich environment which results are the themes of this review. Studies of decomposition of litter in forests have been dominated by the role of nitrogen as a limiting factor, a domination which reflects the preponderance of studies of temperate forests in the Northern Hemisphere. For many forests of the world growing on soils of considerable age, it seems more probable that growth and nutrient cycling are limited by phosphorus (or some other element). There is increasing evidence for a number of forests that phosphorus is immobilized in the first stages of decomposition to a significantly greater extent than is nitrogen. Advances in research will depend, as with studies of soil organic matter, in denning and developing analytical techniques for studying biologically active forms of potentially limiting nutrients, rather than total elemental concentrations. The availability of phosphorus in forests is sustained by phosphorus cycling. More than 50% of the total phosphorus in the surface soils is in organic forms and much of the more labile phosphorus is in the form of diesters. Phosphorus availability is determined by competition between biological and geochemical sinks, and it is clear that the sinks in the rhizosphere (plant roots, microorganisms, soil mineral and organic components) are extensively modified by active processes (e.g. production of exudates, nutrient storage in a variety of organic or polymeric forms and nutrient transport away from sites of uptake). There is abundant evidence that roots of many species exude compounds which have the ability to solubilize sources of phosphorus of otherwise low availability. The significance of root exudates (for example, phosphatases, organic acids) in the functioning of perennial ecosystems has yet to be quantified and there are conflicting reports as to the effects of simple organic acids on phosphorus availability. The distribution of phosphorus sinks and their relative competitiveness and their modification are topics of fundamental importance for future research. In contrast to the mineralization of phosphorus, our knowledge of transformations and availability of nitrogen in forest soils is well‐developed. Net nitrogen mineralization rates approximate rates of nitrogen return in litterfall but the contribution of nitrification is variable. Nitrification is ...
During the last decades, climate and land use changes led to an increased prevalence of megafires in Mediterranean-type climate regions (MCRs). Here, we argue that current wildfire management policies in MCRs are destined to fail. Focused on fire suppression, these policies largely ignore ongoing climate warming and landscape-scale buildup of fuels. The result is a 'firefighting trap' that contributes to ongoing fuel accumulation precluding suppression under extreme fire weather, and resulting in more severe and larger fires. We believe that a 'business as usual' approach to wildfire in MCRs will not solve the fire problem, and recommend that policy and expenditures be rebalanced between suppression and mitigation of the negative impacts of fire. This requires a paradigm shift: policy effectiveness should not be primarily measured as a function of area burned (as it usually is), but rather as a function of avoided socio-ecological damage and loss.
Contents 986I.987II.987III.988IV.991V.992VI.995VII.997VIII.998References998 Summary It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low‐flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, ‘omics’ analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon‐use efficiency.
Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N 2 FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N 2 FP mostly show a similar advantage over OP in nitrogen per leaf area (N area ), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N 2 FP, carbon fixation by photosynthesis (A sat ) and stomatal conductance (g s ) are not related to N area -in distinct challenge to current theories that place the leaf nitrogen-A sat relationship at the center of explanations of plant fitness and competitive ability. Among N 2 FP, only forbs displayed an N area -g s relationship similar to that for OP, whereas intrinsic water use efficiency (WUE i ; A sat /g s ) was positively related to N area for woody N 2 FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N 2 FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and A sat ). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N 2 FP, particularly in arid and semiarid climates.legume | actinorhizal species | nitrogen | photosynthesis | water use efficiency T hrough symbioses with diazotrophic bacteria, legumes and other N 2 -fixing plants (N 2 FP) acquire atmospheric dinitrogen (N 2 ) and are widely expected to maintain greater leaf nitrogen than nonfixing or other plants (OP) (1). N 2 FP can profoundly influence both ecosystem development and responses to changing climate by alleviating nitrogen shortages that limit capacity of ecosystems to fix and sequester CO 2 (2-4). A central tenet of traitbased ecology (5, 6) is that carbon fixation and transpiration are directly related to leaf nitrogen; in turn, leaf nitrogen is used to drive global models of carbon (and water) exchanges between plants and the atmosphere (7).The distribution, abundance, and activity of N 2 FP in terrestrial ecosystems have remained unexplained, even "paradoxical" (8, 9), especially in relation to local and global nitrogen cycles. For the northern hemisphere, one recent explanation of the distribution of N 2 FP (2) and their dominance in wet tropical forests relied on their greater ability to acquire phosphorus from old tropical soils and temperature maxima for N 2 fixation of around 25°C (i.e., similar to prevailing temperatures in the tropics). Menge et al. (8) subsequently noted that the diazotrophic symbioses are typically rhizobial and facultative toward the tropics but actinorhizal and obligate north of about 35°N. Fac...
Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.