Summary Histone variants were recently discovered to regulate neural plasticity, with H2A.Z emerging as a memory suppressor. Using whole-genome sequencing of the mouse hippocampus, we show that basal H2A.Z occupancy is positively associated with steady-state transcription, whereas learning-induced H2A.Z removal is associated with learning-induced gene expression. AAV-mediated H2A.Z depletion enhanced fear memory and resulted in gene-specific alterations of learning-induced transcription, reinforcing the role of H2A.Z as a memory suppressor. H2A.Z accumulated with age, although it remained sensitive to learning-induced eviction. Learning-related H2A.Z removal occurred at largely distinct genes in young vs old mice, suggesting that H2A.Z is subject to regulatory shifts in the aged brain despite similar memory performance. When combined with prior evidence of H3.3 accumulation in neurons, our data suggest that nucleosome composition in the brain is reorganized with age.
Sox2 plays critical roles in cell fate specification during development and in stem cell formation; however, its role in postmitotic cells is largely unknown. Sox2 is highly expressed in supporting cells (SCs) of the postnatal mammalian auditory sensory epithelium, which unlike non-mammalian vertebrates remains quiescent even after sensory hair cell damage. Here, we induced the ablation of Sox2, specifically in SCs at three different postnatal ages (neonatal, juvenile and adult) in mice. In neonatal mice, Sox2-null inner pillar cells (IPCs, a subtype of SCs) proliferated and generated daughter cells, while other SC subtypes remained quiescent. Furthermore, p27Kip1, a cell cycle inhibitor, was absent in Sox2-null IPCs. Similarly, upon direct deletion of p27Kip1, p27Kip1-null IPCs also proliferated but retained Sox2 expression. Interestingly, cell cycle control of IPCs by Sox2-mediated expression of p27Kip1 gradually declined with age. In addition, deletion of Sox2 or p27Kip1 did not cause a cell fate change. Finally, chromatin immunoprecipitation with Sox2 antibodies and luciferase reporter assays with the p27Kip1 promoter support that Sox2 directly activates p27Kip1 transcription in postmitotic IPCs. Hence, in contrast to the well-known activity of Sox2 in promoting proliferation and cell fate determination, our data demonstrate that Sox2 plays a novel role as a key upstream regulator of p27Kip1 to maintain the quiescent state of postmitotic IPCs. Our studies suggest that manipulating Sox2 or p27Kip1 expression is an effective approach to inducing proliferation of neonatal auditory IPCs, an initial but necessary step toward restoring hearing in mammals.
SummaryThe p53 tumor suppressor pathway is frequently inactivated in human cancers. However, there are some cancer types without commonly recognized alterations in p53 signaling. Here we report that histone demethylase KDM5A is involved in the regulation of p53 activity. KDM5A is significantly amplified in multiple types of cancers, an event that tends to be mutually exclusive to p53 mutation. We show that KDM5A acts as a negative regulator of p53 signaling through inhibition of p53 translation via suppression of a subgroup of eukaryotic translation initiation genes. Genetic deletion of KDM5A results in upregulation of p53 in multiple lineages of cancer cells and inhibits tumor growth in a p53-dependent manner. In addition, we have identified a regulatory loop between p53, miR-34, and KDM5A, whereby the induction of miR-34 leads to suppression of KDM5A. Thus, our findings reveal a mechanism by which KDM5A inhibits p53 translation to modulate cancer progression.
Adeno-associated viruses (AAVs) are a commonly used tool in neuroscience to efficiently label, trace, and/or manipulate neuronal populations. Highly specific targeting can be achieved through recombinase-dependent AAVs in combination with transgenic rodent lines that express Cre-recombinase in specific cell types. Visualization of viral expression is typically achieved through fluorescent reporter proteins (e.g., GFP or mCherry) packaged within the AAV genome. Although nonamplified fluorescence is usually sufficient to observe viral expression, immunohistochemical amplification of the fluorescent reporter is routinely used to improve viral visualization. In the present study, Cre-dependent AAVs were injected into the neocortex of wild-type C57BL/6J mice. While we observed weak but consistent nonamplified off-target double inverted open reading frame (DIO) expression in C57BL/6J mice, antibody amplification of the GFP or mCherry reporter revealed notable Cre-independent viral expression. Off-target expression of DIO constructs in wild-type C57BL/6J mice occurred independent of vendor, AAV serotype, or promoter. We also evaluated whether Cre-independent expression had functional effects via designer receptors exclusively activated by designer drugs (DREADDs). The DREADD agonist C21 (compound 21) had no effect on contextual fear conditioning or c-Fos expression in DIO-hM3Dq-mCherry+cells of C57BL/6J mice. Together, our results indicate that DIO constructs have off-target expression in wild-type subjects. Our findings are particularly important for the design of experiments featuring sensitive systems and/or quantitative measurements that could be negatively impacted by off-target expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.