Data collected from 182 marketed and nonmarketed pharmaceuticals demonstrate that there is little value gained in conducting a rat two-year carcinogenicity study for compounds that lack: (1) histopathologic risk factors for rat neoplasia in chronic toxicology studies, (2) evidence of hormonal perturbation, and (3) positive genetic toxicology results. Using a single positive result among these three criteria as a test for outcome in the two-year study, fifty-two of sixty-six rat tumorigens were correctly identified, yielding 79% test sensitivity. When all three criteria were negative, sixty-two of seventy-six pharmaceuticals (82%) were correctly predicted to be rat noncarcinogens. The fourteen rat false negatives had two-year study findings of questionable human relevance. Applying these criteria to eighty-six additional chemicals identified by the International Agency for Research on Cancer as likely human carcinogens and to drugs withdrawn from the market for carcinogenicity concerns confirmed their sensitivity for predicting rat carcinogenicity outcome. These analyses support a proposal to refine regulatory criteria for conducting a two-year rat study to be based on assessment of histopathologic findings from a rat six-month study, evidence of hormonal perturbation, genetic toxicology results, and the findings of a six-month transgenic mouse carcinogenicity study. This proposed decision paradigm has the potential to eliminate over 40% of rat two-year testing on new pharmaceuticals without compromise to patient safety.
Muraglitazar, a PPARα/γ agonist, dose-dependently increased urinary bladder tumors in male Harlan Sprague-Dawley (HSD) rats administered 5, 30, or 50 mg/kg/day for up to 2 years. To determine the mode of tumor development, male HSD rats were treated daily for up to 21 months at doses of 0, 1, or 50 mg/kg while being fed either a normal or 1% NH 4 Cl-acidified diet. Muraglitazar-associated, time-dependent changes in urine composition, urothelial mitogenesis and apoptosis, and urothelial morphology were assessed. In control and treated rats fed a normal diet, urine pH was generally ≥ 6.5, which facilitates formation of calcium-and magnesium-containing solids, particularly in the presence of other prolithogenic changes in rat urine. Urinary citrate, an inhibitor of lithogenesis, and soluble calcium concentrations were dose dependently decreased in association with increased calcium phosphate precipitate, crystals and/or microcalculi; magnesium ammonium phosphate crystals and aggregates; and calcium oxalate-containing thin, rod-like crystals. Morphologically, sustained urothelial cytotoxicity and proliferation with a ventral bladder predilection were noted in treated rats by month 1 and urinary carcinomas with a similar distribution occurred by month 9. Urothelial apoptotic rates were unaffected by muraglitazar treatment or diet. In muraglitazar-treated rats fed an acidified diet, urine pH was invariably < 6.5, which inhibited formation of calcium-and magnesium-containing solids. Moreover, dietary acidification prevented the urothelial cytotoxic, proliferative, and tumorigenic responses. Collectively, these data support an indirect pharmacologic mode of urinary bladder tumor development involving alterations in urine composition that predispose to urolithiasis and associated decreases in urine-soluble calcium concentrations.
The carcinogenic potential of muraglitazar, a dual human peroxisome proliferator-activated receptor alpha/gamma agonist, was evaluated in 2-year studies in mice (1, 5, 20, and 40 mg/kg) and rats (1, 5, 30, and 50 mg/kg). Benign gallbladder adenomas occurred at low incidences in male mice at 20 and 40 mg/kg (area under the curve [AUC] exposures > or = 62 times human exposure at 5 mg/day) and were considered drug related due to an increased incidence of gallbladder mucosal hyperplasia at these doses. There was a dose-related increased incidence of transitional cell papilloma and carcinoma of the urinary bladder in male rats at 5, 30, and 50 mg/kg (AUC exposures > or = 8 times human exposure at 5 mg/day). At 30 and 50 mg/kg, the urinary bladder tumors were accompanied by evidence of increased urine solids. Subsequent investigative studies established that the urinary bladder carcinogenic effect was mediated by urolithiasis rather than a direct pharmacologic effect on urothelium. Incidences of subcutaneous liposarcoma in male rats and subcutaneous lipoma in female rats were increased at 50 mg/kg (AUC exposures > or = 48 times human exposure at 5 mg/day) and attributed, in part, to persistent pharmacologic stimulation of preadipocytes. Toxicologically relevant nonneoplastic changes in target tissues included thinning of cortical bone in mice and hyperplastic and metaplastic adipocyte changes in mice and rats. Considering that muraglitazar is nongenotoxic, the observed tumorigenic effects in mice and rats have no established clinical relevance since they occurred at either clinically nonrelevant exposures (gallbladder and adipose tumors) or by a species-specific mechanism (urinary bladder tumors).
PD 13230 1-2, a novel inhibitor ofacyl-CoA: cholesterol acyltransferase, is adrenotoxic to several laboratory animal species. Morphogenesis of a zona fasciculata-specific cytotoxicity was evaluated in male Hartley guinea pigs administered 100 mg/kg of PD 132301-2 for up to 7 days. Reversibility of adrenal effects was assessed after a 14-day drug withdrawal period (day 21). Serum cortisol concentrations were determined under basal conditions and after administration of adrenocorticotrophic hormone (ACTH) on days 1, 2, 4, 7, and 2 1. Isolated foci of cortical cell degeneration and necrosis were apparent in outer zona fasciculata by 2 hr and throughout the zona fasciculata at 6 hr. Early degenerative ultrastructural changes included aggregation of smooth endoplasmic reticulum (SER), variable condensation of mitochondria1 matrices and swelling of cristae, partitioning of organelles, autophagosome formation, and disruption of lipid globules. Lesions progressed to locally extensive or diffuse zonal necrosis on days 1 and 2 and near complete ablation of zona fasciculata by day 4. Fasciculata cells remaining on day 4 had reduced numbers and increased size of lipid globules, increased lysosomes, and, occasionally, aggregates of SER and mitochondria. On day 7, SER proliferation and lipid depletion were apparent in remaining cells. ACTH responses were attenuated 24 hr after the first dose, and reduction in basal cortisol levels were seen by 24 hr after the second dose with both effects maximal on day 7. After a 14-day withdrawal period, ACTH responses and adrenal morphology returned to normal. It was concluded that PD 132301-2 induced rapid, reversible, zone-specific, morphologic, and functional adrenocortical effects. Furthermore, mitochondria and SER represented early subcellular targets of toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.