The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, GOLD docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogues that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogues of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogues provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity.
Efforts to develop therapeutic agents that inhibit HIV-1 entry have led to the identification of several small molecule leads. One of the most promising is the NBD series, which binds within a conserved gp120 cavity and possesses para-halogen substituted aromatic rings, a central oxalamide linker, and a tetramethylpiperidine moiety. In this study, we characterized structurally the interactions of four NBD analogues containing meta-fluoro substitution on the aromatic ring and various heterocyclic ring replacements of the tetramethylpiperidine group. The addition of a meta-fluorine to the aromatic ring improved surface complementarity and did not alter the position of the analogue relative to gp120. By contrast, heterocyclic ring replacements of the tetramethylpiperidine moiety exhibited diverse positioning and interactions with the vestibule of the gp120 cavity. Overall, the biological profile of NBD-congeners was modulated by ligand interactions with the gp120-cavity vestibule. Herein, six co-crystal structures of NBD-analogues with gp120 provide a structural framework for continued small molecule-entry inhibitor optimization.
[reaction: see text] 10,11-Methylenedioxy-14-azacamptothecin, a potent analogue of the antitumor agent camptothecin (CPT), has been prepared via a key condensation between AB and DE ring precursors. The biological testing of this compound validated a strategy for modulation of the off-rate of camptothecin analogues from the topoisomerase-DNA-CPT ternary complex via structural modification.
The topopyrones represent a new class of highly cytotoxic topoisomerase I poisons. Efficient total syntheses of all four naturally occurring members of this class have been accomplished. Key elements of the syntheses include Diels-Alder reactions employing two novel dienes and a titanium-mediated ortho-directed Friedel-Crafts acylation. Additionally, the syntheses of two chlorinated analogues accessible from an advanced intermediate are described.
The topopyrones are fungal natural products shown previously to act as poisons of human DNA topoisomerase I. Recent total syntheses of the four known naturally occurring members of this class of compounds have enabled more detailed biochemical characterization. Presently it is shown that in addition to topoisomerase I, topopyrones A-D also act as poisons of human DNA topoisomerase II. The topopyrones thus represent a rare example of molecules capable of interacting effectively with more than one DNA topoisomerase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.