In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.
Postpartum dairy cows enter a period of negative energy balance (NEB) associated with low circulating IGF1, during which the uterus must undergo extensive repair following calving. This study investigated the effects of NEB on expression of IGF family members and related genes in the involuting uterus. Cows were allocated to two treatments using differential feeding and milking regimes to produce mild NEB or severe NEB (SNEB). Uterine endometrial samples collected 2 weeks post partum were analysed by quantitative PCR. The expression of IGF-binding protein 4 (IGFBP4) mRNA increased in the endometrium of SNEB cows, with trends towards increased IGFBP1 and reduced IGFBP6 expression. There were no significant differences between treatments in mRNA expression of IGF1, IGF2 or of any hormone receptor studied, but significant correlations across all cows in the expression levels of groups of receptors suggested common regulatory mechanisms: type 1 IGF receptor (IGF1R), IGF2R and insulin receptor (INSR); GHR with ESR1; and ESR2 with NR3C1. The expression of IGF1R and INSR also positively correlated with the circulating urea concentration. Matrix metalloproteinases (MMPs) are important in tissue remodelling and can affect IGF signalling via interaction with IGFBPs. The expression levels of MMP1, MMP3, MMP9 and MMP13 mRNAs all showed major upregulation in the endometrium of cows in SNEB and all except MMP9 were highly correlated with expression of IGFBP4. Alpha(2)-HS-glycoprotein (AHSG) and PDK4, two genes implicated in insulin resistance, were also highly expressed in SNEB. These results suggest that cows in SNEB experience alterations to the IGF and insulin signalling pathways in the postpartum endometrium. This may affect the rate of tissue repair with a possible negative impact on subsequent fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.