Many Gram‐negative pathogens use a type III secretion apparatus to deliver effector molecules into host cells to subvert cellular processes in favour of the pathogen. Enteropathogenic Escherichia coli (EPEC) uses such a system to deliver the Tir effector molecule into host cells. In this paper, we show that the gene upstream of tir, orf19, encodes an additional type III secreted effector protein. Orf19 is delivered into host cells by a mechanism independent of endocytosis, but dependent on EspB. Orf19 is targeted to host mitochondria, where it appears to interfere with the ability to maintain membrane potential. Although the precise role of Orf19 remains to be elucidated, its interaction with mitochondria suggests a possible role in the subversion of key functions of these organelles, such as energy production or control of cell death. This is the first example of a type III secreted protein targeted to mitochondria; it is probable that homologues (present in EPEC and Shigella species) and other bacterial effectors will also target this organelle.
SummaryEnteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule -a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the
Despite increasing application of silver nanoparticles (NPs) in industry and consumer products, there is still little known about their potential toxicity, particularly to organisms in aquatic environments. To investigate the fate and effects of silver NPs in fish, rainbow trout (Oncorhynchus mykiss) were exposed via the water to commercial silver particles of three nominal sizes: 10 nm (N(10)), 35 nm (N(35)), and 600-1600 nm (N(Bulk)), and to silver nitrate for 10 days. Uptake into the gills, liver, and kidneys was quantified by inductively coupled plasma-optical emission spectrometry, and levels of lipid peroxidation in gills, liver, and blood were determined by measurements of thiobarbituric acid reactive substances. Expression of a suite of genes, namely cyp1a2, cyp3a45, hsp70a, gpx, and g6pd, known to be involved in a range of toxicological response to xenobiotics was analyzed in the gills and liver using real-time PCR. Uptake of silver particles from the water into the tissues of exposed fish was low but nevertheless occurred for current estimated environmental exposures. Of the silver particles tested, N(10) were found to be the most highly concentrated within gill tissues and N(10) and N(Bulk) were the most highly concentrated in liver. There were no effects on lipid peroxidation in any of the tissues analyzed for any of the silver particles tested, and this is likely due to the low uptake rates. However, exposure to N(10) particles was found to induce expression of cyp1a2 in the gills, suggesting a possible increase in oxidative metabolism in this tissue.
We investigated the binding of four lectins to the follicle-associated epithelium (FAE) overlying fixed mouse small intestinal Peyer's patches to identify M-cell-specific surface markers. Wheat germ agglutinin and peanut agglutinin displayed heterogeneous staining patterns, binding most avidly to the intestine goblet cells. In contrast, the lectins Ulex europaeus 1 (UEA 1) and Psophocarpus tetragonolobus (winged bean; WBA) were almost exclusively M-cell specific. When confocal laser scanning images of tissues stained with fluorescein isothiocyanate (FITC)-conjugated UEA1 or WBA were compared with the appearance of the same tissues under the scanning electron microscope (SEM), UEA1 strongly stained 97.2% (106/109) of M-cells, 0.6% (3/516) enterocytes, and 0% (0/28) goblet cells, whereas WBA stained 100% (83/83) M-cells, 1.7% (6/361) enterocytes, and 5.3% (1/19) goblet cells. The M-cell specificity of the lectin binding was further demonstrated by localization of horseradish peroxidase (HRP)-conjugated lectins under the transmission electron microscope (TEM). This is the first demonstration of carbohydrates in the glycocalyx of M-cells that are not expressed elsewhere on the FAE surface. These carbohydrates not only provide a means to identify mouse M-cells by LM but may also contribute to the occurrence of specific interactions between microorganisms and the M-cell apical membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.