Studies have shown that optical coherence tomography (OCT) is useful in imaging microscopic structures through highly scattering media. Because spatially coherent light is used in OCT, speckle in the reconstructed image is unavoidable, resulting in degradation of the quality of the OCT images and impaired ability to differentiate subsurface structures. Therefore speckle reduction is an important issue in OCT imaging. We develop speckle statistics that are appropriate to the OCT measurements and demonstrate a simple and practical speckle-reduction technique.
We demonstrate confinement of 85 Rb atoms in a dark, toroidal optical trap. We use a spatial light modulator to convert a single blue-detuned Gaussian laser beam to a superposition of Laguerre-Gaussian modes that forms a ring-shaped intensity null bounded harmonically in all directions. We measure a 1 / e spin-relaxation lifetime of Ϸ1.5 s for a trap detuning of 4.0 nm. For smaller detunings, a time-dependent relaxation rate is observed. We use these relaxation rate measurements and imaging diagnostics to optimize trap alignment in a programmable manner with the modulator. The results are compared with numerical simulations.
The spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is optically prepared and measured through the trion triplet states. A longitudinal magnetic field is used to tune two of the trion states into resonance, forming a superposition state through asymmetric spin exchange. As a result, spin-flip Raman transitions can be used for optical spin initialization, while separate trion states enable cycling transitions for nondestructive measurement. With two-laser transmission spectroscopy we demonstrate both operations simultaneously, something not previously accomplished in a single quantum dot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.