We demonstrate confinement of 85 Rb atoms in a dark, toroidal optical trap. We use a spatial light modulator to convert a single blue-detuned Gaussian laser beam to a superposition of Laguerre-Gaussian modes that forms a ring-shaped intensity null bounded harmonically in all directions. We measure a 1 / e spin-relaxation lifetime of Ϸ1.5 s for a trap detuning of 4.0 nm. For smaller detunings, a time-dependent relaxation rate is observed. We use these relaxation rate measurements and imaging diagnostics to optimize trap alignment in a programmable manner with the modulator. The results are compared with numerical simulations.
We demonstrate Faraday spectroscopy with high duty cycle and sampling rate using atoms confined to a blue-detuned optical trap. Our trap consists of a crossed pair of high-charge-number hollow laser beams, which forms a dark, box-like potential. We have used this to measure transient magnetic fields in a 500µm-diameter spot over a 400 ms time window with nearly unit duty cycle at a 500 Hz sampling rate. We use these measurements to quantify and compensate time-varying magnetic fields to ≈10 nT per time sample.
We demonstrate a technique for imaging magnetic fields using velocity-selective two-photon resonances in a cold atom cloud. Freely expanding (85)Rb atoms released from a magneto-optical trap are exposed to a brief (approximately 1 ms), off-resonant, retro-reflected laser pulse in a lin-perp-lin configuration. Two-photon resonance between magnetic sublevels occurs only for atoms in narrow velocity classes dependent on the magnetic field strength. The momentum of resonant atoms is altered by the pulse, and this two-photon momentum change is easily visible after further ballistic expansion. When the momentum pulse is applied to an atom cloud with finite size, magnetic field variations across the sample result in position-dependent features in images of the expanded cloud. We demonstrate the technique by imaging magnetic field variations over approximately 5 mm with approximately 250 microm spatial resolution.
Two mathematical innovations are presented that relate to calculating propagation of radiation through cylindrically symmetrical systems using Kirchhoff diffraction theory. The first innovation leads to an efficient means of computing Lommel functions of two arguments (u and nu), typically denoted by U(n)(u, nu) and V(n)(u, nu). This can accelerate computations involving Fresnel diffraction by circular apertures or lenses. The second innovation facilitates calculations of Kirchhoff diffraction integrals without recourse to the Fresnel approximation, yet with greatly improved efficiency like that characteristic of the latter approximation.
We observe velocity-selective two-photon resonances in a cold atom cloud in the presence of a magnetic field. We use these resonances to demonstrate a simple magnetometer with sub-mG resolution. The technique is particularly useful for zeroing the magnetic field and does not require any additional laser frequencies than are already used for standard magneto-optical traps. We verify the effects using Faraday rotation spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.