A variety of mass preserving moving boundary problems for the thin film equation, u t = −(u n u xxx ) x , are derived (by formal asymptotics) from a number of regularisations, the case in which the substrate is covered by a very thin pre-wetting film being discussed in most detail. Some of the properties of the solutions selected in this fashion are described, and the full range of possible mass preserving non-negative solutions is outlined.
We investigate self-similar solutions of the dipole problem for the one-dimensional thin film equation on the half-line {x ≥ 0}. We study compactly supported solutions of the linear moving boundary problem and show how they relate to solutions of the nonlinear problem. The similarity solutions are generally of the second kind, given by the solution of a nonlinear eigenvalue problem, although there are some notable cases where first-kind solutions also arise. We examine the conserved quantities connected to these first-kind solutions. Difficulties associated with the lack of a maximum principle and the non-self-adjointness of the fundamental linear problem are also considered. Seeking similarity solutions that include sign changes yields a surprisingly rich set of (coexisting) stable solutions for the intermediate asymptotics of this problem. Our results include analysis of limiting cases and comparisons with numerical computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.