We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO3 and Al2O3 substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the use of ultrahigh vacuum techniques.
The Ni1+/Ni2+ states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu2+/Cu3+ in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La4Ni3O8 at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.
Double-perovskites Sr2MMoO6 (M = Co, Ni) have been investigated as anode materials for a solid oxide fuel cell. At room temperature, both Sr2CoMoO6 and Sr2NiMoO6 are tetragonal (I4/m). X-ray absorption spectroscopy confirmed the presence of Co2+/Mo6+ and Ni2+/Mo6+ pairs in the oxygen-stoichiometric compounds. The samples contain a limited concentration of oxygen vacancies in the reducing atmospheres at an anode. Reoxidation is facile below 600 °C; they become antiferromagnetic at low temperatures T
N = 37 and 80 K for M = Co and Ni, respectively. As an anode with a 300 μm thick La0.8Sr0.2Ga0.83Mg0.17O2.815 electrolyte and SrFe0.2Co0.8O3−δ as a cathode, Sr2CoMoO6 exhibited maximum power densities of 735 mW/cm2 in H2 and 527 mW/cm2 in wet CH4 at 800 °C; Sr2NiMoO6 shows a notable power output only in dry CH4. The high performance of Sr2CoMoO6 in wet CH4 may be due to its catalytic effect on steam reforming of methane, but some degradation of the structure that occurred in CH4 obscures identification of the catalytic reaction processes at the surface. However, the stronger octahedral-site preference of Ni2+ versus Co2+ can account for the lower performance of the M = Ni anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.