Spent potlining (SPL) hazardous waste is a potentially valuable source of fluoride, which may be recovered through chemical leaching and adsorption with a selective sorbent. For this purpose, the commercially available chelating resin Purolite S950+ was loaded with lanthanum ions, to create a novel ligand-exchange sorbent. The equilibrium fluoride uptake behaviour of the resin was thoroughly investigated, using NaF solution and a simulant leachate of SPL waste. The resin exhibited a large maximum defluoridation capacity of 187 ± 15 mg g from NaF solution and 126 ± 10 mg g from the leachate, with solution pH being strongly influential to uptake performance. Isotherm and spectral data indicated that both chemisorption and unexpected physisorption processes were involved in the fluoride extraction and suggested that the major uptake mechanism differed in each matrix. The resin demonstrates significant potential in the recovery of fluoride from aqueous waste-streams.
Sulfonated hyper-cross-linked polymers based on 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) were synthesized via metal-free (SHCP-1) and conventional Lewis acid-catalyzed (SHCP-2) Friedel–Crafts alkylation routes. The sulfonated polymers possessed BET surface areas in excess of 500 m2·g–1. SHCP-1 was investigated for its ability to extract Sr and Cs ions from aqueous solutions via the ion-exchange reaction of the sulfonic acid moiety. Equilibrium uptake data could be accurately modeled by the Dubinin–Radushkevich isotherm, with maximum calculated loading values of 95.6 ± 2.8 mg·g–1 (Sr) and 273 ± 37 mg·g–1 (Cs). Uptake of both target ions was rapid, with pseudo second-order rate constants calculated as 7.71 ± 1.1 (×10–2) for Sr and 0.113 ± 0.014 for Cs. Furthermore, the polymer was found to be highly selective toward the target ions over large excesses of naturally occurring competing metal ions Na, K, Mg, and Ca. We conclude that hyper-cross-linked polymers may offer intrinsic advantages over other adsorbents for the remediation of aqueous Sr and Cs contamination.
Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/) eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. COMPARATIVE STUDY OF THE APPLICATION OF CHELATING RESINS FOR ABSTRACTThe adsorption properties of chelating ion exchange resins containing mixed sulfonic/phosphonic (SP), aminophosphonic (AP) or iminodiacetic (IDA) acid functional groups were investigated towards the rare earth elements (REE). The aim of this work was to determine the potential for such resins to assist in the isolation of a mixed rare earth product under conditions relevant to the hydrometallurgical processing of rare earth containing minerals. The selectivity of the resins towards La, Sm and Ho, versus the common impurity metals; Al, Fe and Th, was determined in sulfuric acid media. The chelating resins all displayed a similar selectivity with Fe and Th adsorbed in preference to the REE and Al (i.e. Th Fe>> REE Al). The IDA resin displayed a far superior performance compared to both phosphonic resins (SP and AP) as well as a strong acid cation exchange resin for the adsorption of REE in the presence of very high Na or Ca concentrations. Equilibrium and kinetic adsorption isotherms for La were measured and successfully modelled with all resins, and the elution characteristics of selected resins investigated in both batch and column operation. A number of areas were identified where these resins could be exploited to provide an advantage in the hydrometallurgical processing of REE.
Article:Ogden, M.D. orcid.org/0000-0002-1056-5799, Moon, E.M., Wilson, A. et ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. Using present technologies, the increased salinity from these water sources results in decreased uranium extraction and increased extraction of impurities. There is incentive to overcome these challenges, either through new technologies, or repurposing existing technologies. The ion exchange behaviour of U from sulfate media on the weakly basic chelating resin Dowex M4195 (bis-picolylamine functionality) and the effect of competing chloride and impurity metal ions (Th, Fe, Al, Cu, Ni) has been studied. Experiments to determine acid, and sulfate media behaviour, and extraction thermodynamics including the effect of increasing chloride concentration upon extraction behaviour were carried out.
A series of linear polyamine functionalised weak base anion exchange resins have been synthesised using the Merrifield resin and characterised using infra-red spectroscopy, thermogravimetry, elemental analysis and solid state 13 C nuclear magnetic resonance spectroscopy. Uptake behaviour towards uranium (as uranyl) from sulfuric acid media has been assessed as a function of pH and sulfate concentration, with comparison to a commercially available weak base anion exchange resin, Purolite S985. Synthetic polyamine resins were seen to outperform the commercial resin at industrially relevant uranyl concentrations, with a trend of increased uptake being seen with increasing polyamine chain length. Uranium loading isotherm studies have been performed and fit with the Langmuir and Dubinin-Radushkevich isotherm models, with a maximum loading capacity observed being 269.50 mg g-1 for the longest polyamine chain studied. Extended X-ray absorption fine structure experiments have been used to determine uranium coordination environment on the resin surface, showing a [UO2(SO4)3] 4species. This coordination knowledge was employed to develop an extraction mechanism and derive an isotherm model based on the law of mass action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.