Saccharomyces cerevisiae mutants lacking oxidative stress response genes were used to investigate which genes are required under normal aerobic conditions to maintain cellular redox homeostasis, using intracellular glutathione redox potential (glutathione E(h)) to indicate the redox environment of the cells. Levels of reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) were also assessed by FACS using dihydroethidium and rhodamine 123 as fluorescent probes. Cells became more oxidised as strains shifted from exponential growth to stationary phase. During both phases the presence of reduced thioredoxin and the activity of glutathione reductase were important for redox homeostasis. Thioredoxin reductase contributed less during exponential phase when there was a strong requirement for active Yap1p transcription factor, but was critical during stationary phase. The absence of ROS detoxification systems, such as catalases or superoxide dismutases, had a lesser effect on glutathione E(h), but a more pronounced effect on ROS levels and MMP. These results reflect the major shift in ROS generation as cells switch from fermentative to respiratory metabolism and also showed that there was not a strong correlation between ROS production, MMP and cellular redox environment. Heterogeneity was detected in populations of strains with compromised anti-oxidant defences, and as cells aged they shifted from one cell type with low ROS content to another with much higher intracellular ROS.
Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to −300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.
Interaction of acridine- and 9-aminoacridinecarboxamide platinum complexes with DNA was investigated with respect to their DNA sequence specificity and kinetics of binding. The DNA sequence specificity of the compounds was quantitatively analyzed using a polymerase stop assay with the plasmid pUC19. The 9-aminoacridinecarboxamide platinum complexes exhibited a different sequence specificity to that of cisplatin, shifted away from runs of consecutive guanines (the main binding site for cisplatin). This alteration was dependent on chain length. Shorter chain length compounds (n = 2, 3) showed a greater difference in sequence specificity, while longer chain length compounds (n = 4, 5) more closely resembled cisplatin. An acridinecarboxamide platinum complex showed a similar sequence specificity to cisplatin, revealing that the major change of sequence specificity was due to the presence of the 9-amino substituent. A linear amplification system was used to investigate the time course of the reaction. The presence of an intercalating group (acridinecarboxamide or 9-aminoacridinecarboxamide) greatly increased the rate of reaction with DNA; this is proposed to be due to a different reaction mechanism with DNA (direct displacement by the N-7 of guanine).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.