Transepithelial/transendothelial electrical resistance (TEER) is a label-free assay that is commonly used to assess tissue barrier integrity. TEER measurement systems have been embedded in Organ-on-a-Chip devices to provide live readouts...
The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.
Background Air travel thrombosis continues to be a controversial topic. Exposure to hypoxia and hypobaric conditions during air travel is assumed a risk factor. The aim of this study is to explore changes in parameters of coagulation, fibrinolysis and blood flow in a rat model of exposure to hypobaric conditions that imitate commercial and combat flights. Methods Sixty Sprague-Dawley male rats, aged 10 weeks, were divided into 5 groups according to the type and duration of exposure to hypobaric conditions. The exposure conditions were 609 m and 7620 m for 2 and 12 h duration. Blood count, thrombin– antithrombin complex, D-dimer, interleukin-1 and interleukin-6 were analyzed. All rats went through flight angiography MRI at day 13-post exposure. Results No effect of the various exposure conditions was observed on coagulation, fibrinolytic system, IL-1 or IL-6. MRI angiography showed blood flow reduction in lower limb to less than 30% in 50% of the rats. The reduction in blood flow was more pronounced in the left vessel than in the right vessel (p = 0.006, Wilcoxon signed rank test). The extent of occlusion differed across exposure groups in the right, but not the left vessel (p = 0.002, p = 0.150, respectively, Kruskal-Wallis test). However, these differences did not correlate with the exposure conditions. Conclusion In the present rat model, no clear correlation between various hypobaric conditions and activation of coagulation was observed. The reduction in blood flow in the lower limb also occurred in the control group and was not related to the type of exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.