Webs are weighted sets of Feynman diagrams which build up the logarithms of correlators of Wilson lines, and provide the ingredients for the computation of the soft anomalous dimension. We present a general analysis of multiple gluon exchange webs (MGEWs) in correlators of semi-infinite non-lightlike Wilson lines, as functions of the exponentials of the Minkowski cusp angles, α ij , formed between lines i and j. We compute a range of webs in this class, connecting up to five Wilson lines through four loops, we give an all-loop result for a special class of diagrams, and we discover a new kind of relation between webs connecting different numbers of Wilson lines, based on taking collinear limits. Our results support recent conjectures, stating that the contribution of any MGEW to the soft anomalous dimension is a sum of products of polylogarithms, each depending on a single cusp angle, and such that their symbol alphabet is restricted to α ij and 1−α 2 ij . Finally, we construct a simple basis of functions, defined through a one-dimensional integral representation in terms of powers of logarithms, which has all the expected analytic properties. This basis allows us to compactly express the results of all MGEWs computed so far, and we conjecture that it is sufficient for expressing all MGEWs at any loop order.
We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy's residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.
Webs are sets of Feynman diagrams which manifest soft gluon exponentiation in gauge theory scattering amplitudes: individual webs contribute to the logarithm of the amplitude and their ultraviolet renormalization encodes its infrared structure. In this paper, we consider the particular class of boomerang webs, consisting of multiple gluon exchanges, but where at least one gluon has both of its endpoints on the same Wilson line. First, we use the replica trick to prove that diagrams involving self-energy insertions along the Wilson line do not contribute to the web, i.e. their exponentiated colour factor vanishes. Consequently boomerang webs effectively involve only integrals where boomerang gluons straddle one or more gluons that connect to other Wilson lines. Next we classify and calculate all boomerang webs involving semi-infinite non-lightlike Wilson lines up to three-loop order, including a detailed discussion of how to regulate and renormalize them. Furthermore, we show that they can be written using a basis of specific harmonic polylogarithms, that has been conjectured to be sufficient for expressing all multiple gluon exchange webs. However, boomerang webs differ from other gluon-exchange webs by featuring a lower and non-uniform transcendental weight. We cross-check our results by showing how certain boomerang webs can be determined by the so-called collinear reduction of previously calculated webs. Our results are a necessary ingredient of the soft anomalous dimension for non-lightlike Wilson lines at three loops.
I present an overview of the study of infrared singularities through the eikonal approximation and the concept of webs. Our work reveals the interesting structure of an infinite subclass of webs, Multiple Gluon Exchange Webs. We find that they can be expressed as sums of products of functions depending upon only a single cusp angle, spanned by a simple basis of functions, and conjecture that this structure will hold to all orders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.