Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
The dissolution of a chemical into water is a process fundamental to both chemistry and biology. The persistence of a chemical within the environment and the effects of a chemical within the body are dependent primarily upon aqueous solubility. With the well-documented limitations hindering the accurate experimental determination of aqueous solubility, the utilization of predictive methods have been widely investigated and employed. The setting of a solubility challenge by this journal proved an excellent opportunity to explore several different modeling methods, utilizing a supplied dataset of high-quality aqueous solubility measurements. Four contrasting approaches (simple linear regression, artificial neural networks, category formation, and available in silico models) were utilized within our laboratory and the quality of these predictions was assessed. These were chosen to span the multitude of modeling methods now in use, while also allowing for the evaluation of existing commercial solubility models. The conclusions of this study were surprising, in that a simple linear regression approach proved to be superior over more complex modeling methods. Possible explanations for this observation are discussed and also recommendations are made for future solubility prediction.
The ability of a compound to cause adverse effects to the liver is one of the most common reasons for drug development failures and the withdrawal of drugs from the market. Such adverse effects can vary tremendously in severity, leading to an array of possible drug-induced liver injuries (DILIs). As a result, it is not surprising that drug development has evolved into a complex and multifaceted process including methods aiming to identify potential liver toxicities. Unfortunately, hepatotoxicity remains one of the most complex and poorly understood areas of human toxicity; thus it is a significant challenge to identify potential hepatotoxins. The performance of existing methods to identify hepatotoxicity requires improvement. The current study details a scheme for generating chemical categories and the development of structural alerts able to identify potential hepatotoxins. The study utilized a diverse 951-compound dataset and used structural similarity methods to produce a number of structurally restricted categories. From these categories, 16 structural alerts associated with observed human hepatotoxicity were developed. Furthermore, the mechanism(s) by which these compounds cause hepatotoxicity were investigated and a mechanistic rationale was proposed, where possible, to yield mechanistically supported structural alerts. Alerts of this nature have the potential to be used in the screening of compounds to highlight potential hepatotoxicity, whilst the chemical categories themselves are important in applying read-across approaches. The scheme presented in this study also has the potential to act as a knowledge generator serving as an excellent starting platform from which to conduct additional toxicological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.