Many courses across the curriculum in secondary and post-secondary education are moving to the so-called "flipped" classroom. In the "flipped" classroom model students survey the course content online before class then class time is spent discussing and solving problems with the guidance of the instructor. The theory of the "flipped" classroom is that students are actively engaged during class with the instructor and other students, thus increasing comprehension of the course material. This paper considers a "flipped" classroom in a university calculus-based engineering statics course. The specific structure of this class was to place recorded videos of lectures, as well as videos of solved problems, online for students to view prior to attending class. Class time was then devoted to a combination of instructor-guided problem solving as well as student-led problem solving. The intention of this approach was to move the concept derivations (which students often discount) out of class time and replace it with more example problems that students directly work to solve with instructor support. The expectation is that students will have more confidence and success in solving statics problems in the future. This research considered in this paper occurred over the course of two semesters with two distinct groups of students. Both qualitative and quantitative assessments were completed during both semesters including student performance on Fundamentals of Engineering exam questions, student surveys, and instructor observations. Modifications were made to the delivery of the course both mid-semester and between semesters based on the results of these assessments. The results of these assessments, as well as the ultimate framework of course, are detailed in this paper.
Qualification of anechoic chambers is intended to demonstrate that the chamber supports the intended free-field environment within some permissible tolerance bounds. Key qualification issues include the method used to obtain traverse data, the analysis method for the data, and the use of pure tone or broadband noise as the chamber excitation signal. This paper evaluates the relative merits of continuous versus discrete traverses, of fixed versus optimal reference analysis of the traverse data, and of the use of pure tone versus broadband signals. The current practice of using widely space discrete sampling along a traverse is shown to inadequately sample the complexity of the sound field extant with pure tone traverses, but is suitable for broadband traverses. Continuous traverses, with spatial resolution on the order of 15% of the wavelength at the frequency of interest, are shown to be necessary to fully resolve the spatial complexity of pure tone qualifications. The use of an optimal reference method for computing the deviations from inverse square law is shown to significantly improve the apparent performance of the chamber for pure tone qualifications. Finally, the use of broadband noise as the test signal, as compared to pure tone traverses over the same span, is demonstrated to be a marginal indicator of chamber performance.
A state-switched device is conceptually capable of instantaneously changing its mass, stiffness, or damping. Such a device will exhibit different dynamical response properties (modes and resonance frequencies) depending on its current state. A state-switched vibration absorber exploits the state-switching concept for the purposes of enhanced vibration suppression. Between each state switch, it is fundamentally a passive vibration absorber, but one which exhibits a different tuning frequency for each possible state. A state-switched vibration absorber therefore has a greater effective bandwidth than a classical passive absorber. This paper considers the role of damping in the state-switching concept for a simple one-degree of freedom system and for a two-degree of freedom system. Certain values of damping in the system improve performance, while other values hinder the performance of the state-switched absorber, as compared to classical absorbers. The predicted performance of the system also depends upon the particular damping model used, such as viscous absorber or system modal damping. Damping values also affect the frequency of switch events that occur during the response of the system. In general, the highest relative performance of the state-switched absorber as compared to a classical vibration absorber occurs at low values of damping.
A state-switched absorber (SSA) is a device that is capable of switching between discrete stiffnesses; thus, it is able to instantaneously switch between resonance frequencies. The state-switched absorber is essentially a passive vibration absorber between switch events; however, at each switch event the SSA instantly “retunes” its natural frequency and maintains that frequency until the next switch event. This paper considers the optimization of the state-switched absorber applied to a continuous vibrating system and details the experimental validation of these simulation results. A simulated annealing optimization algorithm was utilized to optimize the state-switched absorber. For the most part, the SSA performed only marginally better than a classical tuned vibration absorber (TVA). However, for a select few cases considered, the SSA was able to reduce the kinetic energy of the plate to which it is attached by 12.9dB over that of a classical tuned vibration absorber. The optimal SSA location on a clamped square plate was near the center of the plate for the vast majority of the forcing cases considered. To experimentally validate the simulation, a SSA was fabricated by employing magnetorheological elastomers to achieve a stiffness change. For several two-force component excitations, several tuning configurations of the SSA were applied and the kinetic energy of the system was found and optimized. As with the majority of the optimization cases, the experiments showed the SSA outperforming the TVA by only 2dB. When comparing the observed results to those found via simulation, the simulations accurately predicted the performance of the SSA in the experiments.
A State-Switched Absorber (SSA) is a device capable of instantaneously changing its stiffness, thus it can switch between resonance frequencies, increasing its effective bandwidth as compared to classical tuned vibration absorbers for vibration control. Previous theoretical simulations show that for a system subjected to a multi-harmonic disturbance, using an appropriate logic for switching states, the SSA reduces vibration more effectively than classical tuned vibration absorbers (TVA). This paper considers the experimental performance of the SSA for vibration suppression of an elastically mounted lumped mass base. State switching is achieved using magneto-rheological fluid to connect or disconnect a coil spring in parallel with other coil springs. The stiffness state is controlled by applying or removing a magnetic field across of the MR fluid. Experiments were performed over a range of forcing and tuning frequencies. The SSA system, optimally tuned, outperformed the optimal classical TVA system for all combinations of forcing frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.