We present a technique, based on precomputed light transport, for interactive rendering of translucent objects under all-frequency environment maps. We consider the complete BSSRDF model proposed by Jensen et al. [2001], which includes both single and diffuse multiple scattering components. The challenge is how to efficiently precompute all-frequency light transport functions due to subsurface scattering. We apply the two-pass hierarchical technique by Jensen et al. [2002] in the space of non-linearly approximated transport vectors, which allows us to efficiently evaluate transport vectors due to diffuse multiple scattering. We then include an approximated single scattering term in the precomputation, which previous interactive systems have ignored. For an isotropic phase function, this approximation produces a diffuse transport vector per vertex, and is combined with the multiple scattering component. For a general phase function, we introduce a technique from BRDF rendering to factor the phase function using a separable decomposition to allow for view-dependent rendering. We show that our rendering results qualitatively match the appearance of translucent objects, achieving a high level of realism at interactive rates.
We present a technique for interactive rendering of glossy objects in complex and dynamic lighting environments that captures interreflections and all-frequency shadows. Our system is based on precomputed radiance transfer and separable BRDF approximation. We factor glossy BRDFs using a separable decomposition and keep only a few low-order approximation terms, each consisting of a purely view-dependent and a purely light-dependent component. In the precomputation step, for every vertex, we sample its visibility and compute a direct illumination transport vector corresponding to each BRDF term. We use modern graphics hardware to accelerate this step and further compress the data using a nonlinear wavelet approximation. The direct illumination pass is followed by one or more interreflection passes, each of which gathers compressed transport vectors from the previous pass to produce global illumination transport vectors. To render at run time, we dynamically sample the lighting to produce a light vector, also represented in a wavelet basis. We compute the inner product of the light vector with the precomputed transport vectors, and the results are further combined with the BRDF view-dependent components to produce vertex colors. We describe acceleration of the rendering algorithm using programmable graphics hardware and discuss the limitations and trade-offs imposed by the hardware.
We present a technique, based on precomputed light transport, for interactive rendering of translucent objects under all-frequency environment maps. We consider the complete BSSRDF model proposed by Jensen et al. [2001], which includes both single and diffuse multiple scattering components. The challenge is how to efficiently precompute all-frequency light transport functions due to subsurface scattering. We apply the two-pass hierarchical technique by Jensen et al. [2002] in the space of non-linearly approximated transport vectors, which allows us to efficiently evaluate transport vectors due to diffuse multiple scattering. We then include an approximated single scattering term in the precomputation, which previous interactive systems have ignored. For an isotropic phase function, this approximation produces a diffuse transport vector per vertex, and is combined with the multiple scattering component. For a general phase function, we introduce a technique from BRDF rendering to factor the phase function using a separable decomposition to allow for view-dependent rendering. We show that our rendering results qualitatively match the appearance of translucent objects, achieving a high level of realism at interactive rates.
Qualification of anechoic chambers is intended to demonstrate that the chamber supports the intended free-field environment within some permissible tolerance bounds. Key qualification issues include the method used to obtain traverse data, the analysis method for the data, and the use of pure tone or broadband noise as the chamber excitation signal. This paper evaluates the relative merits of continuous versus discrete traverses, of fixed versus optimal reference analysis of the traverse data, and of the use of pure tone versus broadband signals. The current practice of using widely space discrete sampling along a traverse is shown to inadequately sample the complexity of the sound field extant with pure tone traverses, but is suitable for broadband traverses. Continuous traverses, with spatial resolution on the order of 15% of the wavelength at the frequency of interest, are shown to be necessary to fully resolve the spatial complexity of pure tone qualifications. The use of an optimal reference method for computing the deviations from inverse square law is shown to significantly improve the apparent performance of the chamber for pure tone qualifications. Finally, the use of broadband noise as the test signal, as compared to pure tone traverses over the same span, is demonstrated to be a marginal indicator of chamber performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.