Diagnostic error is commonly multifactorial in origin, typically involving both system-related and cognitive factors. The results identify the dominant problems that should be targeted for additional research and early reduction; they also further the development of a comprehensive taxonomy for classifying diagnostic errors.
A wide variety of research studies suggest that breakdowns in the diagnostic process result in a staggering toll of harm and patient deaths. These include autopsy studies, case reviews, surveys of patient and physicians, voluntary reporting systems, using standardised patients, second reviews, diagnostic testing audits and closed claims reviews. Although these different approaches provide important information and unique insights regarding diagnostic errors, each has limitations and none is well suited to establishing the incidence of diagnostic error in actual practice, or the aggregate rate of error and harm. We argue that being able to measure the incidence of diagnostic error is essential to enable research studies on diagnostic error, and to initiate quality improvement projects aimed at reducing the risk of error and harm. Three approaches appear most promising in this regard: (1) using ‘trigger tools’ to identify from electronic health records cases at high risk for diagnostic error; (2) using standardised patients (secret shoppers) to study the rate of error in practice; (3) encouraging both patients and physicians to voluntarily report errors they encounter, and facilitating this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.